1. Further, if in affirmative demonstration the series terminates in both directions, clearly it will terminate too in negative demonstration. Let us assume that we cannot proceed to infinity either by ascending from the ultimate term (by 'ultimate term' I mean a term such as was, not itself attributable to a subject but itself the subject of attributes), or by descending towards an ultimate from the primary term (by 'primary term' I mean a term predicable of a subject but not itself a subject). If this assumption is justified, the series will also terminate in the case of negation. For a negative conclusion can be proved in all three figures. In the first figure it is proved thus: no B is A, all C is B. In packing the interval B-C we must reach immediate propositions - as is always the case with the minor premiss - since B-C is affirmative. As regards the other premiss it is plain that if the major term is denied of a term D prior to B, D will have to be predicable of all B, and if the major is denied of yet another term prior to D, this term must be predicable of all D. Consequently, since the ascending series is finite, the descent will also terminate and there will be a subject of which A is primarily non-predicable. In the second figure the syllogism is, all A is B, no C is B,..no C is A. If proof of this is required, plainly it may be shown either in the first figure as above, in the second as here, or in the third. The first figure has been discussed, and we will proceed to display the second, proof by which will be as follows: all B is D, no C is D..., since it is required that B should be a subject of which a predicate is affirmed. Next, since D is to be proved not to belong to C, then D has a further predicate which is denied of C. Therefore, since the succession of predicates affirmed of an ever higher universal terminates, the succession of predicates denied terminates too.

2. The third figure shows it as follows: all B is A, some B is not C. Therefore some A is not C. This premiss, i.e. C-B, will be proved either in the same figure or in one of the two figures discussed above. In the first and second figures the series terminates. If we use the third figure, we shall take as premisses, all E is B, some E is not C, and this premiss again will be proved by a similar prosyllogism. But since it is assumed that the series of descending subjects also terminates, plainly the series of more universal non-predicables will terminate also. Even supposing that the proof is not confined to one method, but employs them all and is now in the first figure, now in the second or third - even so the regress will terminate, for the methods are finite in number, and if finite things are combined in a finite number of ways, the result must be finite.

3. Thus it is plain that the regress of middles terminates in the case of negative demonstration, if it does so also in the case of affirmative demonstration. That in fact the regress terminates in both these cases may be made clear by the following dialectical considerations.

HTML edition © created 1996/11/25 modified 2009/04/26