1. Since demonstrations may be either commensurately universal or particular, and either affirmative or negative; the question arises, which form is the better? And the same question may be put in regard to so-called 'direct' demonstration and reductio ad impossibile. Let us first examine the commensurately universal and the particular forms, and when we have cleared up this problem proceed to discuss 'direct' demonstration and reductio ad impossibile.

2. The following considerations might lead some minds to prefer particular demonstration.

3. (1) The superior demonstration is the demonstration which gives us greater knowledge (for this is the ideal of demonstration), and we have greater knowledge of a particular individual when we know it in itself than when we know it through something else; e.g. we know Coriscus the musician better when we know that Coriscus is musical than when we know only that man is musical, and a like argument holds in all other cases. But commensurately universal demonstration, instead of proving that the subject itself actually is x, proves only that something else is x - e.g. in attempting to prove that isosceles is x, it proves not that isosceles but only that triangle is x - whereas particular demonstration proves that the subject itself is x. The demonstration, then, that a subject, as such, possesses an attribute is superior. If this is so, and if the particular rather than the commensurately universal forms demonstrates, particular demonstration is superior.

4. (2) The universal has not a separate being over against groups of singulars. Demonstration nevertheless creates the opinion that its function is conditioned by something like this - some separate entity belonging to the real world; that, for instance, of triangle or of figure or number, over against particular triangles, figures, and numbers. But demonstration which touches the real and will not mislead is superior to that which moves among unrealities and is delusory. Now commensurately universal demonstration is of the latter kind: if we engage in it we find ourselves reasoning after a fashion well illustrated by the argument that the proportionate is what answers to the definition of some entity which is neither line, number, solid, nor plane, but a proportionate apart from all these. Since, then, such a proof is characteristically commensurate and universal, and less touches reality than does particular demonstration, and creates a false opinion, it will follow that commensurate and universal is inferior to particular demonstration.

5. We may retort thus. (1) The first argument applies no more to commensurate and universal than to particular demonstration. If equality to two right angles is attributable to its subject not qua isosceles but qua triangle, he who knows that isosceles possesses that attribute knows the subject as qua itself possessing the attribute, to a less degree than he who knows that triangle has that attribute. To sum up the whole matter: if a subject is proved to possess qua triangle an attribute which it does not in fact possess qua triangle, that is not demonstration: but if it does possess it qua triangle the rule applies that the greater knowledge is his who knows the subject as possessing its attribute qua that in virtue of which it actually does possess it. Since, then, triangle is the wider term, and there is one identical definition of triangle - i.e. the term is not equivocal - and since equality to two right angles belongs to all triangles, it is isosceles qua triangle and not triangle qua isosceles which has its angles so related. It follows that he who knows a connexion universally has greater knowledge of it as it in fact is than he who knows the particular; and the inference is that commensurate and universal is superior to particular demonstration.

6. (2) If there is a single identical definition i.e. if the commensurate universal is unequivocal - then the universal will possess being not less but more than some of the particulars, inasmuch as it is universals which comprise the imperishable, particulars that tend to perish.

7. (3) Because the universal has a single meaning, we are not therefore compelled to suppose that in these examples it has being as a substance apart from its particulars - any more than we need make a similar supposition in the other cases of unequivocal universal predication, viz. where the predicate signifies not substance but quality, essential relatedness, or action. If such a supposition is entertained, the blame rests not with the demonstration but with the hearer.

8. (4) Demonstration is syllogism that proves the cause, i.e. the reasoned fact, and it is rather the commensurate universal than the particular which is causative (as may be shown thus: that which possesses an attribute through its own essential nature is itself the cause of the inherence, and the commensurate universal is primary; hence the commensurate universal is the cause). Consequently commensurately universal demonstration is superior as more especially proving the cause, that is the reasoned fact.

9. (5) Our search for the reason ceases, and we think that we know, when the coming to be or existence of the fact before us is not due to the coming to be or existence of some other fact, for the last step of a search thus conducted is eo ipso the end and limit of the problem. Thus: 'Why did he come?' 'To get the money - wherewith to pay a debt - that he might thereby do what was right.' When in this regress we can no longer find an efficient or final cause, we regard the last step of it as the end of the coming - or being or coming to be - and we regard ourselves as then only having full knowledge of the reason why he came.

10. If, then, all causes and reasons are alike in this respect, and if this is the means to full knowledge in the case of final causes such as we have exemplified, it follows that in the case of the other causes also full knowledge is attained when an attribute no longer inheres because of something else. Thus, when we learn that exterior angles are equal to four right angles because they are the exterior angles of an isosceles, there still remains the question 'Why has isosceles this attribute?' and its answer 'Because it is a triangle, and a triangle has it because a triangle is a rectilinear figure.' If rectilinear figure possesses the property for no further reason, at this point we have full knowledge - but at this point our knowledge has become commensurately universal, and so we conclude that commensurately universal demonstration is superior.

11. (6) The more demonstration becomes particular the more it sinks into an indeterminate manifold, while universal demonstration tends to the simple and determinate. But objects so far as they are an indeterminate manifold are unintelligible, so far as they are determinate, intelligible: they are therefore intelligible rather in so far as they are universal than in so far as they are particular. From this it follows that universals are more demonstrable: but since relative and correlative increase concomitantly, of the more demonstrable there will be fuller demonstration. Hence the commensurate and universal form, being more truly demonstration, is the superior.

12. (7) Demonstration which teaches two things is preferable to demonstration which teaches only one. He who possesses commensurately universal demonstration knows the particular as well, but he who possesses particular demonstration does not know the universal. So that this is an additional reason for preferring commensurately universal demonstration. And there is yet this further argument:

13. (8) Proof becomes more and more proof of the commensurate universal as its middle term approaches nearer to the basic truth, and nothing is so near as the immediate premiss which is itself the basic truth. If, then, proof from the basic truth is more accurate than proof not so derived, demonstration which depends more closely on it is more accurate than demonstration which is less closely dependent. But commensurately universal demonstration is characterized by this closer dependence, and is therefore superior. Thus, if A had to be proved to inhere in D, and the middles were B and C, B being the higher term would render the demonstration which it mediated the more universal.

14. Some of these arguments, however, are dialectical. The clearest indication of the precedence of commensurately universal demonstration is as follows: if of two propositions, a prior and a posterior, we have a grasp of the prior, we have a kind of knowledge - a potential grasp - of the posterior as well. For example, if one knows that the angles of all triangles are equal to two right angles, one knows in a sense - potentially - that the isosceles angles also are equal to two right angles, even if one does not know that the isosceles is a triangle; but to grasp this posterior proposition is by no means to know the commensurate universal either potentially or actually. Moreover, commensurately universal demonstration is through and through intelligible; particular demonstration issues in sense-perception.

HTML edition © created 1996/11/25 modified 2009/04/26