## Negative demonstration and reductio ad impossibile

\RbJbk{87}{a}

1. Since affirmative demonstration is superior to negative, it is clearly superior also to reductio ad impossibile. We must first make certain what is the difference between negative demonstration and reductio ad impossibile. Let us suppose that no B is A, and that all C is B: the conclusion necessarily follows that no C is A. If these premisses are assumed, therefore, the negative demonstration that no C is A is direct. Reductio ad impossibile, on the other hand, proceeds as follows. Supposing we are to prove that does not inhere in B, we have to assume that it does inhere, and further that B inheres in C, with the resulting inference that A inheres in C. This we have to suppose a known and admitted impossibility; and we then infer that A cannot inhere in B. Thus if the inherence of B in C is not questioned, A's inherence in B is impossible.

2. The order of the terms is the same in both proofs: they differ according to which of the negative propositions is the better known, the one denying A of B or the one denying A of C. When the falsity of the conclusion is the better known, we use reductio ad impossible; when the major premiss of the syllogism is the more obvious, we use direct demonstration. All the same the proposition denying A of B is, in the order of being, prior to that denying A of C; for premisses are prior to the conclusion which follows from them, and 'no C is A' is the conclusion, 'no B is A' one of its premisses. For the destructive result of reductio ad impossibile is not a proper conclusion, nor are its antecedents proper premisses. On the contrary: the constituents of syllogism are premisses related to one another as whole to part or part to whole, whereas the premisses A-C and A-B are not thus related to one another. Now the superior demonstration is that which proceeds from better known and prior premisses, and while both these forms depend for credence on the not-being of something, yet the source of the one is prior to that of the other. Therefore negative demonstration will have an unqualified superiority to reductio ad impossibile, and affirmative demonstration, being superior to negative, will consequently be superior also to reductio ad impossibile.

HTML edition © created 1996/11/25 modified 2009/04/26