Aristotle - The Organon ANALYTICA POSTERIORA Book 1 Part 32

Basic truths are not limited in number

1. All syllogisms cannot have the same basic truths. This may be shown first of all by the following dialectical considerations. (1) Some syllogisms are true and some false: for though a true inference is possible from false premisses, yet this occurs once only - I mean if A for instance, is truly predicable of C, but B, the middle, is false, both A-B and B-C being false; nevertheless, if middles are taken to prove these premisses, they will be false because every conclusion which is a falsehood has false premisses, while true conclusions have true premisses, and false and true differ in kind. Then again, (2) falsehoods are not all derived from a single identical set of principles: there are falsehoods which are the contraries of one another and cannot coexist, e.g. 'justice is injustice', and 'justice is cowardice'; 'man is horse', and 'man is ox'; 'the equal is greater', and 'the equal is less.' From established principles we may argue the case as follows, confining ourselves therefore to true conclusions. Not even all these are inferred from the same basic truths; many of them in fact have basic truths which differ generically and are not transferable; units, for instance, which are without position, cannot take the place of points, which have position. The transferred terms could only fit in as middle terms or as major or minor terms, or else have some of the other terms between them, others outside them.

2. Nor can any of the common axioms - such, I mean, as the law of excluded middle - serve as premisses for the proof of all conclusions. For the kinds of being are different, and some attributes attach to quanta and some to qualia only; and proof is achieved by means of the common axioms taken in conjunction with these several kinds and their attributes.

3. Again, it is not true that the basic truths are much fewer than the conclusions, for the basic truths are the premisses, and the premisses are formed by the apposition of a fresh extreme term or the interposition of a fresh middle. Moreover, the number of conclusions is indefinite, though the number of middle terms is finite; and lastly some of the basic truths are necessary, others variable.

4. Looking at it in this way we see that, since the number of conclusions is indefinite, the basic truths cannot be identical or limited in number. If, on the other hand, identity is used in another sense, and it is said, e.g. 'these and no other are the fundamental truths of geometry, these the fundamentals of calculation, these again of medicine'; would the statement mean anything except that the sciences have basic truths? To call them identical because they are self-identical is absurd, since everything can be identified with everything in that sense of identity. Nor again can the contention that all conclusions have the same basic truths mean that from the mass of all possible premisses any conclusion may be drawn. That would be exceedingly naive, for it is not the case in the clearly evident mathematical sciences, nor is it possible in analysis, since it is the immediate premisses which are the basic truths, and a fresh conclusion is only formed by the addition of a new immediate premiss: but if it be admitted that it is these primary immediate premisses which are basic truths, each subject-genus will provide one basic truth. If, however, it is not argued that from the mass of all possible premisses any conclusion may be proved, nor yet admitted that basic truths differ so as to be generically different for each science, it remains to consider the possibility that, while the basic truths of all knowledge are within one genus, special premisses are required to prove special conclusions. But that this cannot be the case has been shown by our proof that the basic truths of things generically different themselves differ generically. For fundamental truths are of two kinds, those which are premisses of demonstration and the subject-genus; and though the former are common, the latter - number, for instance, and magnitude - are peculiar.

UPHOME HTML edition © RBJ created 1996/11/25 modified 2009/04/26