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e This document was started when I was working with NF and NFU, and is for the sake of
simpliticy based directly on the formalisation of NFU following Holmes [4]. T have now come to



a better understanding of the difficulties in working with NFU in ProofPower and am inclined
to adopt a different non-well-founded set theory.

The next time I do any work on this, I am therefore likely to decouple it from any specific set
theory, and define it as a construction on an arbitrary set theory.

Another aspect of this work which I now regard as obsolete is my attempt to make something
of pseudo-induction (which I never really understood). In my subsequent work on non-well-
founded set theories I have abandoned pseudo-induction. In particular my work on infinitarily
definable non-well-founded sets yeilds its own kinds of induction over non-well-founded sets.
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1 Prelude

In well-founded set theories there is no category of (all) categories. This is one of a wider collection of
issues which might be raised against the foundation of mathematics exclusively on well-founded sets.
More commonly perhaps, the failure in well-founded set theories of the notion of cardinal numbers
as equivalence classes under equipollence may be thought a primary motivation for considering non-
well-founded set theories. Here we investigate non-well-founded ontologies without seeking new
ways of representing numbers, but rather in order to have richer ontological support for abstract
mathematics.

There are two aims for this document concerned with the category of categories. The more ambitious
and exotic, perhaps even frivolous, is the construction of a category theoretic foundational ontology
which might serve as an alternative to the established ontology of well-founded sets. This itself does
not demand a departure from well-foundedness, but in our case we add the additional requirement
that there be a category of all categories and more generally that the distinction between large
and small categories which is necessary in well-founded set theories are rendered nugatory by the
existence of categories encompassing the totality of relevant kinds of mathematical structures (e.g.
a category corresponding to each kind of algebra).

Though in this we aim for a category theoretic foundation which stands on its own (rather than
being based on a set theory) we need a meta-language to describe this system, and the ontology of
that meta-language will include a non-well-founded set theory. This set theory will also be expected
to have a category of categories.

The exploration involves more than one set theoretic starting point, and more than one way of
constructing concrete category theoretic structures from the chosen set theories. The interest is
primarily in systems which combine a substantial collection of well-founded entities with a non-well-
founded ontology including a universal set or category.

2 INTRODUCTION

The material here concerns non-well-founded formal foundations for mathematics.

It builds on formalisations of non-well-founded set theories in [4, 5] some based on books by Forster
[1] and Holmes [2] and engages in a process of ontological transformation, whereby the ontology for
an established foundation system is used to construct an alternative ontology, for which a suitable
axiomatisation is formally established.

The rationale here is as follows:

e [t is natural, even in an untyped universe, to abstract away from the detailed coding of functions
as sets by treating both sets and functions as primitive.

e In set theory we find a foundational ontology which is as simple as can be (i.e. sets are
completely unstructured collections, all other ontologies involve working with structures which
have more information in them than the collection of things from which they are built. This
presumably has many advantages in the investigation of foundational problems. It may be
however, that ontologies of more structured entities are pragmatically superior in applications.
Sets and functions are special cases of Categories (which are sets with some structure) and
functors (more generally arrows) which are functions which preserve some structure. This more
complex ontology subsumes in a very direct way the more primitive set/function ontology. A
set is a discrete category, a function is a functor whose domain is discrete.



e all the above has nothing to do with universal sets or well-foundedness. The kind of construc-
tion described is easily done in a well-founded set theory, but I have found the prospective
advantages in a well-founded context insufficient motivation to carry through from the con-
struction to development of the resulting theory. Partly this is because category theory more
conspicuously than set theory screams against the constraint of well-foundedness. When done
in a non=well-founded context, the additional merit of a category theory in which talk about
size becomes less pervasive is added to the incentive to see how the theory works out.

There are several approaches to this problem addressed in this document. Some are based on the
axiomatisation of NFU in [4], and some on the model for a theory of poly-sets in [5]. The former
appear in section 2.1 the latter in section 2.2.

2.1 Approaches Based on NFU

Two approaches to this construction are presented, the first based on the notion of pseudo-well-
foundedness presented in [1] and the second a “Co-Inductive” definition using methods from [3],
one other is defined, en passant i.e. the well-founded inductive definition (which differs from the
co-inductive case only in taking a least instead of a greatest fixed point), but taken not further. One
more case might merit consideration if we had decided to take pseudo-induction more seriously, and
that is pseudo-co-induction (again taking a greatest rather than a least fixed point).

I will spell this out informally a little more fully.

Let us begin considering the hereditarily finite sets. A hereditarily finite set is a finite set whose
members are hereditarily finite set, nothing else is. This is an inductive definition, in higher order
set theory we can define them as the intersection of all collections of sets which are closed under the
formation of finite sets. One can imagine doing this for any property of sets, there is nothing special
about ”finite”.

Now consider the “hereditarily functional sets”. A set is functional if it is a set of ordered pairs which
considered as a relation is many-one. Too close a parallel with the description of “hereditarily finite”
fails in this case. If we say: “the hereditarily functional sets are those functional sets all of whose
members are hereditarily functional sets” we are immediately in trouble, because the members of a
function are ordered pairs, not functions.

So in this case we need to generalise from “member” to constituent, the notion of constituent being
a parameter along with the property. In this case the constituents are the things in the domain and
range of the function.

So now we say “the ‘hereditarily functional sets’ are those many-one relations whose field consists
entirely of hereditarily functional sets”. This elaboration of the idea of ‘hereditarily P’ sets provides
a semantic way of getting new foundation systems from old, the theory of hereditarily functional sets
would make a foundation system similar in strength to the set theory on which its definition is based,
and can be independently axiomatised, throwing away all reference to the original set theory. To
suggest that the resulting theory is a peer to set theory rather than remaining in some way parasitic
upon it, I observe that by a broadly similar construction the original set theory can be constructed
from the new function theory, as the ‘hereditarily empty set valued functions” (i.e. the functions
which always return the empty set, differing only in their domain, and which can therefore be taken
as representatives of their domains).

Though there is some attraction in a foundation system based on functions rather than sets, this
particular one (an untyped theory involving only well-founded functions) has attracted little interest.
Unfortunately the only “problem” it appears to fix is the awkwardness of coding up functions as



graphs using sets, and this it replaces with the awkwardness of representing sets by special kinds of
function.

We really need both sets and functions, ideally perhaps without coding either, so one might attempt
an inductive construction which involved both concepts and yielded a two-sorted theory. However,
its more interesting to go one step further and consider sets and functions as special cases of concrete
categories and functors. This I have previously done in the well-founded case (at least, so far as
defining the domains is concerned). The objective here is to do something similar, without the
constraint to well-foundedness, so that we get a foundation system which is categorical and in which
there is a universal category.

The well-founded case has been addressed in a web page, at:
http://www.rbjones.com/rbjpub/pp/gst/pcf-defns.html

using a pair of rather cumbersome constructions. The material here offers an alternative presenta-
tion of essentially the same material as well as different constructions not confined to well-founded
ontologies.

Here I propose to take from that only the manner of representing categories and functors, and to
recode the construction following Forster’s definition of pseudo-well-foundedness. Thus, a functor
will be a triple consisting of a set which is the domain, a set which is the codomain and a function
which is a many one relation between the domain and the codomain, total on the domain. A category
is a set of functors. The left and right identity operations yeild the domain and codomain of the
functors, composition is relational composition on the graphs.

In the well-founded case the construction is a liberalisation of the notion of ‘hereditarily P’ set.
which is closely coupled to the notion of well-foundedness. The two liberalisations are, firstly that
the notion of constituent replaces that of member and secondly that we have two sorts of entity
involved. In the non well-founded case we begin with the idea of pseudo-hereditary set which is
coupled with Forster’s notion of pseudo-wellfoundedness. This already is two sorted, so the hope is
that these two sorts can be the categories and functors. So we perform the same liberalisation as
before (from talk of members to talk of constituents) and then we have a notion of two sets being
‘pseudo-C-hereditarily (P,Q)’ (the ‘C’ being the notion of constituent at stake, of which strictly there
are two). Then we plumb in the properies specific to the category theoretic application.

All of this would be to no avail if done in the context of a well-founded set theory, though it would
be useful to know whether it yields the same result as ‘C-heredicarily (P,Q)’ in such a context. To
get a result which is not well-founded, we need to start with a non-well-founded collection of sets.
For this purpose we have axiomatisations in ProofPower HOL of NF and NFU. The work is done
by defining operators on set membersbip relations, so that the same construction can be applied to
more than one set theory.

2.2 Approaches Based on Poly-Sets

The most distinctive feature of this material, in contrast with the material based on NFU is not the
particular set theory conceived of as its content, but rather that the material is mainly presented
as a construction over a more or less arbitrary set theory and only at the end instantiated to a
particular set theory. In fact, the theory of Poly-Sets is given in the same manner. This makes it
possible to demonstrate more fully the relationship between properties in the underlying set theories
and properties in the resulting category theoretic system.

One this approach has been completed it should be possible to use the material in it to restate
the definition based on NFU, until that is done this document will appear to have two superficial
different treatments of the same category theoretic material.
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3 PRE-FUNCTORS

This is a theory of the kind of functions which are suitable for use as the arrows in a concrete
category. Since the concrete categories which are of interest here are all categories of categories, the
arrows will be functors and it is therefore not inappropriate to call this special kind of function a
“pre-functor”.

The sole difference between a prefunctor and a many-one relation in set theory is simply that the
pre-functors have a defined codomain which may be distinct from its range. It does not have a
domain which is distinct from the set of values for which it is defined, since we expect the functions
in a concrete category and the functors in a category of categories to be total functions.

This theory is a child of the formalisation of NFU in [4] (roughly) following Holmes [2].
SML

‘open_theory "nfu_f";

‘force_new_ theory "pre_func";

‘set-merge-pcs ["holl", " savedthm_cs_3_proof", "'nfu_f1"];

HOL Constant

PreFunctor : SET,; — BOOL

Vpe PreFunctor p < 3z ye p = op(z, y) A Rel A ManyOnens © A T™hg & Spf y

We define functions giving the graph, domain and codomain and field of a pre-functor and for
application and composition of prefunctors.

HOL Constant

PFgraph : SET,; — SET s

PFgraph = fst

HOL Constant

PFdom : SET,; — SET

Vpe PFdom p = dom (PFgraph p)

HOL Constant

PFcod : SETnf i SETnf

HOL Constant

PFfield : SET,; — SET,;

Vpe PFfield p = PFdom p u,s PFcod p



SML

declare_infix (300, "g,");

This composition operator does not check that the pre-functors being compose have matching ‘types’.

HOL Constant

. SET,¢ — SET,; — SET

\
|
| ¥p qo p g q = op((PFgraph p) gns (PFgraph q), PFcod q)

The identity pre-functor over some set is:

HOL Constant

PFid : SET,; — SET.;

|
|
‘ Vae PFid a = op(id a, a)

We can now define the left and right identities for a pre-functor.

HOL Constant

PFleft : SET,; — SET

Vae PFleft a = PFid (PFdom a)

HOL Constant

PFright : SET,; — SET .

|
|
‘ Vae PFright a = PFid (PFcod a)

Pre-functor composition is an infix suffix p.

SML

‘ declare_infix (320, "p");

HOL Constant

. SET,; — SET,; — SET;

\
|
‘Vpcdoopc d) €5 (PFgraph p) = p nf ¢ = d

4 CATEGORIES AND FUNCTORS

More than one approach is considered for defining collections of categories and functors in terms of
the selected axiomatisation of set theory.

The first approach considered was inspired by the notion of pseudo-well-foundedness discussed in [1],
the second on co-inductive methods described in [3]. Some initial material describing the categories
and functors under discussion is used by both approached and is therefore presented first.



4.1 Common Material on Categories and Functors

Now we define the properties and content functions corresponding to concrete categories and functors.
This could be done by defining a function which takes a membership relation as an argument and
returns a full set of four values for use with the function PseudoCDPQHeredirary. However, this
involves additional effort which would only be repaid if the construction were used over multiple set
theories so I shall begin with a more direct definition.

The intention is that when the two collections have been defined they will be used to create two new
types, and that theorems would then be proven about those types which would be suitable for an
independent axiomatisation of the theories (for use as a foundation system). This all involves quite
a bit of reasoning which strictly belongs to the metatheory and would best not stored in the same
theories as contain then object theory. I will therefore create a theory meta_cf which will contain
the ‘metatheory’ and put the theory itself in theory cf (for Categories and Functors). I propose to
base the construction on NFU.

SML
‘force_new_theory "catfun";
‘(*new-parent " firp" ;)

A concrete category (here) is a set of functors (the arrows) which is closed under composition (where
the domain and codomains match) and includes the identity functors on the domain and codomain of
each functor. Composition is the same operation in all categories, and is associative as here defined.

A concrete functor is an ordered pair of which:

e the first element is a many-one relation
e the second element is a set which includes the right field of the relation

e the mapping defined by the first element over its domain respects composition on that domain

Note that the codomain is explicit in the right hand element of the functor, the domain is recovered
from the graph on the left, hence all functors are total.

HOL Constant

CatProp : SET,; — BOOL

Yae CatProp a <
(Vbe b €,y a = PFleft b €,y a A PFright b €, a)
A (Vb c:SETppe b €np a A ¢ €y a A PFdom ¢ = PFcod b = (b gy ¢) €y a)

This function returns the set of functors in a category.

HOL Constant

CatCon : SET,; — SET,; SET

Vae CatCon a = {f | f €n a}



HOL Constant

FuncProp : SET,; — BOOL

Yae FuncProp a <
rng (PFgraph a) Sp¢ (PFcod a)
A (Vb ce b ey PFdom a A ¢ €ny PFdom a A PFcod b = PFdom c

= op (b 9p G, (a p b) snf (a P C)) Enf a)

This function returns the set of categories in the field of a functor.

HOL Constant

FuncCon : SET,; — SET,; SET

|
|
‘ Vfe FuncCon f = {PFdom f; PFcod f}

The following is a deeper category property, which asserts that the members of the category are all
functors.

HOL Constant

CatFuncProp : SET,; — BOOL

|
‘ Vae CatFuncProp a < CatProp a A VYfe f € CatCon a = FuncProp f

If the deeper property is in use, a deep content function may also be needed. This gives for each
category the set of categories which appear as the domain or codomain of one of the functors in the
category.

HOL Constant

CatFuncCon : SET,; — SET,; SET

Vee CatFuncCon ¢ = | J{fc | Ife f € CatCon ¢ A fc = FuncCon f}

Next we have the corresponding deeper functor property which asserts that the domain and codomain
of the functor are categories.

HOL Constant

FuncCatProp : SET,; — BOOL

|
‘ VYae FuncCatProp a < FuncProp a A Vce ¢ € FuncCon a = CatProp c

Similarly the deeper functor content:

HOL Constant

FuncCatCon : SET,; — SET,; SET

\
|
‘ Vfe FuncCatCon f = |J{cf | Ice ¢ € FuncCon f A ¢f = CatCon c}

For use in co-inductive definitions the property and the content function are combined into a single
content function which effectively incorporates the property. This function maps sets to sets. It
maps each set to the set of objects which can be constructed from the members in the argument set.

10



4.2 Meta-Theory by Pseudo-Induction

SML

‘force-new-theory "metapi";

‘new_parent "nfu_f";

‘(*new_parent " fizp" ;)

‘ set_merge_pcs["holl", "' savedthm_cs_3_proof"];

Since these sets (the categories and functors) are expected to be disjoint, at most (hopefully exactly)
one of them will contain the empty set. In our scheme the empty set is a category (but not a functor,
functors will all be ordered pairs). Looking at our definition of hereditarily above we see that the
empty set can only be a member of the left hand collection, and so (¢,P) must be the content function
and characterising property for the categories and (d,Q) are those for functors.

We are now in a position to define the sets of pseudo-well-founded categories and functors.

HOL Constant

PWFcf : SET,; SET x SET,; SET

\
|
‘ PWFcf = PseudoHereditarilyP@Q (CatCon, FuncCon, CatProp, FuncProp)

We need them as properties for introducing types.

HOL Constant

PW Fcategory : SET,; — BOOL

PWZFcategory = Ace ¢ € (Fst PWFcf)

HOL Constant

PWF functor : SET,; — BOOL

PWFfunctor = \fe f € (Snd PWFcf)

In order to use these properties to introducing new types we have to prove that they are non-empty.
Its useful to keep the theorems for the specific witnesses, the empty categort and the trivial functor.

pwf_cat_F_thm = + PWZFcategory &
A_pwf_cat_thm = 3 ae PWFcategory a
D_pwf_func_thm =+ PWFfunctor (op(&, &))
A_pwf_func_thm = F 1 ae PWFfunctor a

4.3 Object Theory by Pseudo-Induction

Now we introduce a new theory in which the types of pseudo-well-founded categories and functors are
defined, and whose theories are intended to be a suitable independent axiomatisation for a two-sorted
foundation system for which these two types supply a model.

11



SML

open_theory "metapi";

force_new_theory "cfpi";

force_new_pc "cfpi";

new_type_defn([" CAT"], "CAT", |, I-pwf-cat_thm);
new_type_defn(["FUNC"], "FUNC", [], I-pwf_func_thm);

4.4 Meta-Theory by (Co-)Induction

The one we want here is co-induction, but we also show elements of the treatment by induction.
SML

open_theory "catfun";

force_new_theory “metaci";

new_parent "nfu_f";

(xnew_parent "fixp";*)

set_merge_pcs["holl", " savedthm_cs_3_proof"|;

We must first chose one of the kinds of representation which are supported by the theory ‘fixp’ and
convert our available functions to the chosen format. In this case a ‘content relation’ will suffice.
This is the relation between an object and those things of which it is an immediate constituent. In
this case we take two of these, one giving the relation between a category and those categories of
which it is the domain or codomain of a functor, the other that between a functor and those functors
of whose domain or codomain the functor is a member.

HOL Constant

CatRel : SET,; — SET,; — BOOL

Ve de CatRel ¢ d & CatFuncProp d A ¢ € CatFuncCon d

HOL Constant

FuncRel : SET,; — SET,; — BOOL

Vf ge FuncRel f g < FuncCatProp g A f € FuncCatCon g

We may now use these two functions to obtain the least and greatest fixed points which are the
respective inductive and co-inductively defined classes.

First the inductive case:

HOL Constant

WPFcf : SET,; SET x SET,; SET

WFc (HeredRel CatRel, HeredRel FuncRel)

Then the co-inductive case:

12



HOL Constant

CWFcf : SET,; SET x SET,; SET

\
|
‘ CWFcf = (CoHeredRel CatRel, CoHeredRel FuncRel)

For the purpose of introducing new types we need this as two properties:

HOL Constant

CW Fcategory : SET,; — BOOL

VYce CWFcategory ¢ = ¢ € Fst CWFcf

HOL Constant

CWF functor : SET,; — BOOL

Vfe CWFfunctor f = f € Snd CWFcf

13



5 The Theory pre_func

5.1 Parents
nfu_f
5.2 Children

catfun

5.3 Constants
PreFunctor  SET,; — BOOL

PFgraph SET ;s — SET ;s

PFdom SETnf — SETnf

PFcod SETnf - SETnf

PF field SET ;s — SET ;s

op SETnf d SETnf d SETnf
PFid SET ;s — SET s

PFleft SETnf — SETnf
PFright SET ;s — SET ;s

$p SET,; — SET,; — SET
5.4 Fixity

Right Infix 300:

Right Infix 320:
p

5.5 Definitions

PreFunctor + VY p
e PreFunctor p
S Jzy
*p=op (‘777 y)
A Rel z
A ManyOneyns x

A TG T Spfp YY)

PFgraph + PFgraph = fst
PFdom YV pe PFdom p = dom (PFgraph p)
PFcod  PFcod = snd
PF field I V pe PFfield p = PFdom p U,y PFcod p
$p FVYpgq
® p 8, q = op (PFgraph p g,y PFgraph q, PFcod q)

PFid -V ae PFid a = op (id a, a)
PFleft I V ae PFleft a = PFid (PFdom a)
PFright I V ae PFright a = PFid (PFcod a)
p F ConstSpec

(O

eVpcd

e op (¢, d) €,y PFgraph p = p 5 ¢ = d)
$,

14



6 The Theory catfun

6.1 Parents

pre_func

6.2 Children

metact metapt

6.3 Constants

CatProp SET,; — BOOL
CatCon SET,; — SET,; P
FuncProp SET,; — BOOL
FuncCon SET,; — SET,; P

CatFuncProp SET,; — BOOL
CatFuncCon SET,; — SET, P
FuncCatProp SET,; — BOOL
FuncCatCon SET,; — SET, P

6.4 Definitions

CatProp FVYa
e CatProp a
< (Vb
ebey a
= PFleft b €,y a A PFright b €,5 a)
A(Vbec
e b€y anc€y an PFdom ¢ = PFcod b
= b gy cEy a)
CatCon -V ae CatCon a = {f|f €ns a}
FuncProp FVYa
e FuncProp a
< rng (PFgraph a) S,; PFcod a
A (Vbec
e b €y PFdom a
A ¢ €Epp PFdom a
A PFcod b = PFdom c
= o0p (bgpc,apbsgyayc)ey a)
FuncCon -V fe FuncCon f = {PFdom f; PFcod f}
CatFuncProp +— VY a
o CatFuncProp a
< CatProp a A (V¥ fe f € CatCon a = FuncProp f)
CatFuncCon |-V ¢
e CatFuncCon c
= |J {fc|]3 fo f € CatCon ¢ A fc = FuncCon f}
FuncCatProp + V a
o FuncCatProp a
< FuncProp a A (V¥ ce ¢ € FuncCon a = CatProp c)

15



FuncCatCon F V f
o FuncCatCon f
= |J {cf|3 ce c € FuncCon f A ¢f = CatCon c}

16



7 The Theory metapi

7.1 Parents

nfu_f catfun
7.2 Children

cfpi
7.3 Constants

PWFcf SET ;s P x SET,; P
PW Fcategory SET,; — BOOL
PWF functor SET,; — BOOL

7.4 Definitions

PWFcf — PWFcf
= PseudoHereditarilyPQ
(CatCon, FuncCon, CatProp, FuncProp)
PW Fcategory +— PWFcategory = (A ce ¢ € Fst PWFcf)
PWF functor + PWFfunctor = (\ fe f € Snd PWFcf)

7.5 Theorems

pwf_cat_F_thm

+ PWFcategory
I pwf_cat_-thm

F 3 ae PWFcategory a
I-pwf_func_thm

+ PWEfunctor (op (&, &))
Ipwf_func_thm

F 3 ae PWFfunctor a

17



8 The Theory cfpi

8.1 Parents
metapi
8.2 Types

CAT
FUNC

8.3 Definitions

CAT F 3 fe TypeDefn PWZFcategory f
FUNC F 3 fe TypeDefn PWEfunctor f

18



9 The Theory metaci

9.1 Parents

nfu_f catfun

9.2 Constants

CatRel SET,; — SET,; — BOOL
FuncRel SET,; — SET,; — BOOL
W Fcf SET,; P x SET, P
CWFcf SETns P x SET,p P

CW Fcategory SET,; — BOOL
CWF functor SET,; — BOOL

9.3 Definitions

CatRel VY ¢ de CatRel ¢ d < CatFuncProp d A ¢ € CatFuncCon d
FuncRel VY f ge FuncRel f g & FuncCatProp g ~ f € FuncCatCon g
WFcf — WFcf = (HeredRel CatRel, HeredRel FuncRel)

CWFcf F CWFcf = (CoHeredRel CatRel, CoHeredRel FuncRel)

CW Fcategory + YV ce CWFcategory ¢ < ¢ € Fst CWFcf
CWF functor + VY fe CWFfunctor f < f € Snd CWFcf

9.4 Theorems

1_.CW Fcategory_thm
F 3 ce CWFcategory c
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