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1 Prelude

This document is intended to form a chapter of An Analytic History of Philosophical Logic [4, 6, 5]
and is made available as a separate document prior to completion of that work.

For an introduction to and overview of the work as a whole see [2].

2 Introduction

This document has not really been started yet.
Here are some notes on what it might contain.

For the purposes of this analytic history the single most important concern is what Leibniz con-
tributed to out understanding of the concept of logical truth. For this we consider primarily the
most fundamental parts of his metaphysics, which we do partly through the perspective of Bertrand
Russell [7], whose own philosophy of Logical Atomism was influenced by Leibniz and will be consid-
ered later.

Leibniz contributed also to our ideas about the applications of logic, through his “universal char-
acteristic” and “calculus ratiocinator”. Some kind of analysis of his ideas in this area would be
nice.

3 Leibniz On Identity

This just shows the triviality of the identity of indiscernibles in our logical context, and raises the
question, what more substantive point is Leibniz making and has it any substance?

It is clear that Leibniz’s intention was not to forumlate such trivial principles as are found here. He
intends that distinct individuals always differ in some substantive way (using that term informally).
The real problem here is whether this can be captured formally in HOL, and this section at present
does not make offer any elightenment on that topic.

SML
‘open_theory "misc2";
‘force-new-theory "leibniz01";

‘set_pc "misc2",

In higher order logic an identity of indiscernables (though probably not Leibniz’s) is a trivial principle.

Its formulation is:
| Vz ye (VPe P(z) & P(y)) =z =y

Here is a long-winded transcript of a ProofPower proof session:

SML

‘set_goal([], "Vz ye (VPe P(x) & P(y)) = z = y);

ProofPower output
‘(* sk Goal "" sk x)

#* 7 %) "Vzye (WPe P s Py =z=y"



Strip the goal.

SML

‘ a (REPEAT strip_tac);

ProofPower output

(x sk Goal "" sk x)

(* 1 %) "V PePzx<s Py’

(x 7+ %) Tz =y
Instantiate the assumption using the predicate "$ = y 7. L

SML

‘a (spec_asm_tac "V Pe P x < Py "$= y7);

ProofPower output

(x sk Goal "" sk x)

(* 2%) "V PePzx<s Py’
( 1%) Ty—a

( 7+ %) Tz =y

The instantiation yields:

"y=zeoy=y'
sly=r=>y=yry=y=y=u1)
e(ry=zvy=yArly=zv y=y)
e (ny=zvT)arn(y=xv F)?

< T(y=12)"

of which the last is the new assumption shown above.

Rewrite the conclusion with the assumptions (giving "z = 2 7 which is automatically discharged).

SML

‘ a (asm_rewrite_tac|]);

ProofPower output
‘Tactic produced 0 subgoals:
‘Current and main goal achieved

Save the theorem.
SML

val letbniz_tdentity = save_pop_thm "leibniz_identity";

!This is the predicate “equal to y”, or "Az.y = z



ProofPower output
‘Now 0 goals on the main goal stack
‘Ual leibniz_identity = + YV z yo (Y Pe Pz < P y) =z =1y : THM

So, in this context, that indiscernibles are identical is an elementary consequence of the fact that for
every entity ‘e’ there is a predicate ‘equal to e’ which is satisfied only by e.

Leibniz intended by his principle something more substantial, which is harder to capture.

4 The Calculus Ratiocinator

This section is primarily based on what is said about Leibniz in the book written by Lukasievicz
on Aristotles syllogistic, I have not checked this out against Leibniz’s own writings, though it seems
plausible from what I have read.

Leibniz’s calculus is an arithmetisation of Aristotle’s syllogistic. That such an arithmetisation will
have the power which Leibniz attributes to it is certainly not the case, but my concern here is just
to build a model which is similar to the arithmetic interpretation and allows us to check the extent
to which it properly captures the relevant parts of Aristotle’s logic. Since useful groundwork on this
is done in my formal treatment of Aristotle[3], I will make use of some of that material by making
this document logically dependent upon it, and making the theory which is here developed a child
of one of the my models of Aristotle.

4.1 Leibniz’s Interpretation of Aristotle’s Syllogistic

The rationale for Leibniz’s interpretation of propositions depends upon his conceptual atomism. This
is the idea that concepts can be classified as either simple or complexr and that complex concepts
are defined ultimately (though possibly indirectly) in terms of simple concepts, by limited means.
The limited means consist of negation of simple concepts and conjunction. It is further assumed
that simple concepts are logically independent of each other, and that none of them is always true
or always false (possibly this should be read necessarily true or necessarily false).

Given this simple idea of what concepts are, conceptual inclusion is decidable provided that we know
which concepts are simple and we know the definitions of all the complex concepts. Conceptual
inclusion corresponds to the A form of proposition, the I form is also decidable, and the other two
are defined in terms of those two.

Leibniz arithmetises this by assuming that each simple concept is given a unique prime number, and
that complex concepts are then represented by two numbers. The first of these two numbers is the
product of the primes of the simple concepts which occur positively in the definition of the complex
concept (when this has been expanded out so that it no longer mentions any complex concepts and
therefore consists of a conjunction of simple concepts or their negations). The second number is
the product of the primes which code the simple concepts whose negations appear in the expanded
definition.

Arithetisation is not essential, any equivalent way of coding up the information about which simple
concepts or negations of simple concepts appear in the definition of a complex concept will do, and
reasoning will be simpler if the problem of obtaining prime factorisations is sidestepped. We need not
know how simple concepts are represented, and we can represent a conjunction as a list of conjuncts.

There is a small awkwardness if we want equality of concepts to be the same thing as equality of the
representation and hence obtain:



Aa B and B a A entails A = B

If we just used two pairs of lists of simple concepts then the same concept would have multiple
representatives, and pairs of lists which overlapped would not represent concepts at all. We could
use a pair of sets of simple concepts, but then we have the possibility of infinite sets and we still
might have overlap. A function from simple concepts into the type BOOL+ONE where the BOOL
component represents negative or positive presence of the simple concept gets the identity correct
but might allow infinite numbers of simple concepts. This is a possible point of divergence from
Leibniz, but I'm going to try this one.

SML

‘ open_theory "aristotle";

‘force_ new_theory "leibniz02";

4.1.1 Semantics

We will allow that any type be used as the simple concepts, so that all the rules we can establish
will be correct in the finite case and in the infinite case.

SML

declare_type_abbrev(" TermL", [], “'a — TTV™);

TTV is a type with just three elements which may be thought of as truth values. Their names are
pTrue, pFalse and pU. 1 will use pTrue to make a positively occurring simple concept, pFalse to
mark a negated simple concept. pU marks a simple concept which does not occur in the relevant
complex concept.

The predicate Some will be true iff a TTV does not have the value pU.

HOL Constant

Some : TTV — BOOL

The predicate IsPos will be true iff a BOOL+ONE has the value pTrue.

HOL Constant

IsPos : TTV — BOOL

Vxe IsPos x < x = pTrue

4.1.2 Predication

[P [}

o” is already in use for functional composition, so we will use “u” instead and then use an alias to
permit us to write this as “o” (type inference will usually resolve any ambiguity).

To render these in HOL we first declare the relevant letters as infix operators:

They predication operators are defined as follows:



SML

300,
300,
300, "iv);
300, "u");

declare_infiz (
declare_infix (
declare_infix (
(

declare_infiz

HOL Constant

$a : TermL — TermL — BOOL

VA Be A a B < Vze (B 1z = pTrue = A x = pTrue) A (B = = pFalse = A x = pFalse)

HOL Constant

$i : TermL — TermL — BOOL

YVABe Ai B& Ve Az =Br=Ax=pU

HOL Constant

$e : TermL — TermL — BOOL

YVABe Ae B —Ai B

HOL Constant

$u : TermL — TermL — BOOL

VA Be AuB < - AaB

SML

‘declare-alias(”o”, T$u);

Note that as defined above these come in complementary pairs, a being the negation of o and e of 1.
If we had negation we could manage with just two predication operators.

4.1.3 The Laws of Immediate Inference

Though in the source of this kind of “literate script” are to be found the scripts for generating and
checking the proofs of all the theorems presente, it will not be my practice to expose these scripts
in the printed version of the document. These scripts are not usually intelligible other than in that
intimate man-machine dialogue which they mediate, and sufficient knowledge for most purposes of
the structure of the proof will be found in the detailed lemmas proven (since the level of proof
automation is modest).

However, 1 will begin by exposing some of the scripts used for obtaining proofs of syllogisms in this
model, to give the reader an impession of the level of complexity and kind of obscurity involved in
this kind of formal work, I will not attempt sufficient explanation to make these scripts intelligible,
they are best understood in the interactive environment, all the scripts are available for readers who
want to run them.



Most readers are expected to skip over the gory details, the philosophical points at stake do not
depend on the details of the proofs.

Before addressing the laws of immediate inference 2 I devise a tactic for automating simple proofs in
this domain.

The following elementary tactic expands the goal by applying the definitions of the operators and
then invokes a general tactic for the predicate calculus. A rule is also defined using that tactic for

direct rather than interactive proof.
SML

val syll_tacL = REPEAT (POP_ASM_T ante_tac)
THEN rewrite_tac (map get_spec ["$a™, "$e™, T$:i7, "$u])
THEN REPEAT strip_tac THEN all_asm_fc_tac []
THEN_TRY asm_rewrite_tac|];

fun syll_ruleL g = tac_proof (g, syll_tacL);

val syll_tacLb = REPEAT (POP_ASM_T ante_tac)
THEN rewrite_tac (map get_spec ["$a™, "$e, T$i7, "$u])
THEN contr_tac THEN asm_fc_tacl];

fun syll_ruleLb g = tac_proof (g, syll_tacLb);

val e_.conv_.thm = A e B+~ B e A: THM
val t_.conv_thm = A1 B+~ B i A: THM

Simple Conversion

Conversion Per Accidens These are OK.
‘val at_.conv_thm = A a B+~ B 1 A: THM
‘val eo_conv_thm = Ae B+~ B o A: THM

Obversion For these we need to define an operation of complementation on terms.
HOL Constant

Complement : TermL — TermlL

VA ae (Complement A) a =
if A a = pTrue then pFalse
else if A o = pFalse then pTrue

else pU

W~

We will use
SML

as a shorthand for “Complement”.
‘declare_alms ("~". T Complement™);

Only two of the obversions are valid.

‘val ae_obv_thm = Aa B+ Ae~ B: THM
\vaz iu_obv_thm = Ai B+~ A o~ B : THM

2in which I followed Strawson [8], though I can now cite Aristotle, Prior Analytic, Book 1, Part 2. [1]


http://texts.rbjones.com/rbjpub/philos/classics/aristotl/o3102c.htm

4.1.4 The Square of Opposition

ao_contrad_thm =+ Aa B< — Ao B
ei_contrad_thm =+ Ae B< - Ai B
ae_contrar_thm = = — (A a B A A e B)
to_subcont_thm =+ Ai B v Ao B
ai_subalt_thm =+ Aa B = Ai B
eo_subalt_thm =+ Ae B= Ao B

4.1.5 The Syllogisms

First we make a mapkit.

SML

val sLmapkit:mapkit = mkSimpMapkit ™ TermL™ ["$a7,"$e7,7 i7" $u™];

Then we apply this in generating and proving the syllogisms.
SML

‘pmveGoals syll_tacL """ (mkGoals sLmapkit syllogism_datal);
‘pmveGoals syll_tacL """ (mkGoals sLmapkit syllogism_data2);
‘proveGoals syll_tacL """ (mkGoals sLmapkit syllogism_data3);

The theorems are also displayed in the theory listing in Appendix B

5 Metaphysics

This is an adaptation of the model of Aristotelian logic and metaphysics in section 77, to reflect the
most crucial differences between Aristotle and Leibniz.

Russell [7] represents Leibniz as having adhered rather strictly to Aristotle’s logic with bad conse-
quences for his metaphysics, in particular he sees the idea of monads as having arisen from the idea
that all propositions have subject/predicate form. This is something into which I hope to look more
closely in due course.

However, our analysis of Aristole suggests that if his metaphysics is so construed as to make his
logic sound, then existence is necessary, and this view is incorporated into our model (which may go
too far in this matter). For Leibniz however the position on existence is pretty clear. Existence of
substantial individuals is the only thing which is contingent, all else is necessary.

The following model is therefore an exploration of what happens if we tweak the underlying model
to ensure exactly that. One thing that we should expect, is that the syllogisms which exhibit the
“existential fallacy” will no longer be sound. The second thing which seems to flow from that is
the irrelevance of the essential/accidental distinction which is possibly the most important feature
of Aristotelian metaphysics. In 7?7 I assume that this distinction is intended to correspond to that
between necessary and contingent truth (though this may be tendentious, I am not aware of explicit
textual support for it). This can no longer be done, and I therefore abandon Aristotelian metaphysics
altogether returning to a treatment of the syllogism less influenced by metaphysics.

The connection with Grice and Codd is no longer relevant so that material also is excised.

10



SML
‘open_theory "misc2",;
‘force_ new_theory "letbniz03";

‘force_ new_pc " “leibniz03";

5.1 The Subject Matter

Once the essential /accidental distinction is discarded, we are left with a metaphysic in which the key
distinction is between individual substances and predicates.

We take an individual to be something which is only truly predicable of itself, and other predicates
as collections of individuals, once again accounting for (essential) predication as set inclusion (having
represented an individual as a unit set). This subset relation is fixed, but the individual substances
which are the extensions of predicates are themselves contingent.

SML

new_type ("ISUB", 0);

Let us take a new type for a fixed population of predicates.

SML

new_type ("PRED", 0);

Whose extension is fixed.

HOL Constant

extension : PRED — ISUB P

T

However, the extension is defined in terms of individual substances whose existence is contingent,
and so we still have the possibility of distinguishing essential predication from accidental, according
to whether inclusion obtains on the full extension, or merely on the extensions restricted to the
individuals which actually exist.

A possible world is therefore a collection of individuals.

SML

declare_type_abbrev ("W", [|, “ISUB P7);

We to distinguish one possible world which is the actual world:

HOL Constant

actual_world : W

T

Subjects and predicates are just things of type PRED.

11



5.2 Predication

Though the retreat from accidental predication simplifies matters I will retain a presentation of the
syllogism similar to that in Section 7?7, for the sake of its readability.

So I separate out the quantifier by defining All and Some appropriately, and retain the postfix negator
even though only one kind of predication is now available. (in fact I could define the two kinds of
predication because the I still have available two kinds of extension, but the modal operators suffice
to express the distinction between the two kinds of predication).

I will then treat the modal operators as operators over propositions, and introduce the syllogism as
a kind of judgement.

The type of the primitive copulas is:

SML

declare_type_abbrev("COPULA", [], =ISUB — PRED — (W — BOOL)");

The first parameter is an individual substance rather than a PRED, the quantifying operato will
arrange for each of the relevant individuals to be supplied.

SML

declare_type_abbrev ("MPROP", [], "W — BOOL™);

Propositions

Complementation The distinction between affirmative and negative is achieved by a postfix
negation so we can say “is not”, or “are not” (which in this models would be synonyms, so we
will go with “are” only.

SML

‘declare_postﬁz (100, "not");

HOL Constant

$not : COPULA — COPULA

Vprede pred not = Apa t we — pred pa t w

Quantifiers The quantifiers expect to be supplied with a copula and a term. The quantifier then
predicates using the copula the term of everything or something in the domain of quantification
(which is the subject term). The copulas are defined below.

HOL Constant

All : PRED — (ISUB —- PRED — MPROP) - PRED — MPROP

Vsrpe All s 1 p = Awe Vze z € extension s A 2 € w =172 p w

HOL Constant

Some : PRED — (ISUB —- PRED — MPROP) —- PRED — MPROP

Vs r pe Some st p= Awe Jze 2z € extension s A 2 € W AT 2P W

12



Predication For essential predication it is necessary that the individual and the predicate are
both of the same category and then reduces under our model to set membership. In effect. since
the non-substantial individuals are tagged with their category, we need only deal separately with the
distinction between substantial and non-substantial and the set inclusion will ensure a match in the
non-substantial categories.

HOL Constant

are : ISUB —- PRED — MPROP

Vi te are 1 t = A\we i € extension t

Modal Operators In this model the model operators are operators over propositions.

HOL Constant

& @ MPROP — MPROP

Vpe & p = Awe Jw'e p w’

HOL Constant

0: MPROP — MPROP

Vpe (I p = Awe Yuw'e p w'

5.3 Propositional Operators

Though the truth functional propositional operators do not feature in the syllogism it is nevertheless
useful to have them in giving a full account of Aristotle’s logic and they are therefore here defined.

That these propositional operators are “truth functional”, in a context in which propositions are not
regarded as denoting truth values requires a little explanation perhaps. Our propositions are families
of truth values indexed by possible worlds, i.e. functions from possible worlds to truth values, or
in the context of a two valued logic (which Aristotle’s seems to be), sets of possible worlds. In this
context the usual truth functional operators can be expressed by mapping the usual operator over
the set of possible worlds, i.e. the result in every possible world is the result of applying the truth
functional operator to the values of the propositions in that possible world. These also correspond
to the obvious set theoretic operation if the propositions are thought of as sets of possible worlds,
i.e. intersetion for conjunction, complementation for negation.

The symbols for the operators are already in use, so we define the operations using decorated variants
of the symbols and use an alias to allow the undecorated symbol to be used.

HOL Constant

—a : MPROP — MPROP

SML

‘ declare_alias ("—", "—,7);

13



SML

‘ declare_infiz (220, "A,");

HOL Constant

$Aq : MPROP — MPROP — MPROP

| VD ge (p Ao @) = Awe (p w) A (g w)

SML

‘ declare_alias ("A", "$A,7T);

SML

‘ declare_infix (210, "=,");

HOL Constant

$=4 : MPROP —» MPROP — MPROP

Vp qe (p =4 q) = Awe pw = quw

SML

‘ declare_alias ("=", "$=,7);

SML

‘declare_mﬁx(QOO, "S");

HOL Constant

$<4 : MPROP — MPROP — MPROP

|
| VP ge (p S0 q) = Awe pw & quw
SML

‘ declare_alias (""", "$<,7);

5.4 Quantification

The Grice/Code analysis makes use of quantifiers, particularly existential quantification. To verify
the formulae in this context we therefore need to define modal version of the quantifiers.

SML

‘declare_bmder "W

HOL Constant

$Ve : (PRED — MPROP) — MPROP

Vmpfe $Y, mpf = \we Vie mpf t w

14



SML

‘ declare_alias ("V", "$V,7);

SML

‘ declare_binder "3,";

HOL Constant

$34 : (PRED — MPROP) - MPROP

Vmpfe $3, mpf = Awe Ite mpf t w

SML

‘ declare_alias ("3", "$3,7);

5.5 Judgements

I’'m not yet clear what to offer here, so for the present I will define two kinds of sequent, which will
be displayed with the symbols = asnd II. the former being a kind of contingent material implication
and the latter a necessary implication.

Both form of judgement seem suitable for expressing the rules of the syllogism at first glance but
which can also be used for conversions.

The first expresses a contingent entailment, that if some arbitrary finite (possibly empty) collection
of premises are contingently true, then some conclusion will also be true. Since the consequence
is material, and the premisses might be contingent, the conclusion might also be contingent. One
might hope that if the rules of the syllogism are applied and the premises are necessary, then so will
be the conclusions.

SML

‘ declare_infix(100, "E");

HOL Constant

$& : MPROP LIST — MPROP — BOOL

\
|
‘ Vip ce Ip = ¢ < Fold (Ap te p actual_world ~ t) Ip T = ¢ actual_world

This one says that in every possible world the premises entail the conclusion (still material).

SML

‘ declare_infix (100, "II");

HOL Constant

$11 : MPROP LIST — MPROP — BOOL

Vip ce lp I ¢ & Ywe Fold (Ap te p w A t)lp T = ¢ w

In the present context the choice between the two is probably immaterial, since we know no more
about the actual world than any other, so anything that we can prove to be true contingently, we
can also prove to be true necessarily.

15



5.6 Conversions

Premisses, their Modes and Conversions See: Prior Analytics Book 1 Part 2 Paragraph 2.

First then take a universal negative with the terms A and B.

If no B is A, neither can any A be B. For if some A (say C) were B, it would not be true
that no B is A; for Cis a B.

But if every B is A then some A is B. For if no A were B, then no B could be A. But we
assumed that every B is A.

Similarly too, if the premiss is particular. For if some B is A, then some of the As must be
B. For if none were, then no B would be A. But if some B is not A, there is no necessity
that some of the As should not be B; e.g. let B stand for animal and A for man. Not
every animal is a man; but every man is an animal.

These work out fine for izz, so I will do those first, and then show that they fail for hazz and is.

The first and third conversions are most useful when expressed as an equation, since our proof system
is based primarily on rewriting using equations.

‘are_not_lemma =

‘ — All B (are not) A = All A (are not) B
‘some-are_lemma =

‘ F Some B are A = Some A are B

These we also supply as our Aristotelian judgements, together with the second which does not give
an equation. The second conversion embodies the existential fallacy, and therefore is not provable
here.

are_convl =
[All B (are not) A] II All A (are not) B

are_conv2 =
[All B izz A| II Some A izz B

are_conv3 =
[Some B izz A] I Some A izz B

5.7 Modal Conversions

Prior Analytics Book 1 Part 3 See: Universal and Possible Premisses and their Conversions.

These are the conversions in relation to necessity and possibility described by Aristotle:

1. If it is necessary that no B is A, it is necessary also that no A is B.

2. If all or some B is A of necessity, it is necessary also that some A is B.

w

. If it is possible that all or some B is A, it will be possible that some A is B.

4. and so on

16
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So in this section Aristotle only offers variants of the previous conversions with either “possible” or
“necessary” attached to both premiss and conclusion.

We can prove generally that modal operators can be introduced into a conversion:
S_conv =

[Pl IT Q=1[0PlII OQ

[J-conv =

HIP]II Q= [OP]I0Q

Now according to Leibniz all predication is necessary, only existence is contingent. However, the
contingency of existence means that this must be interpreted as a claim about predicates applied
only to individuals.

QAllBareA_thm =+ [] II & (All B are A)

The upshot is that to show that our model captures the necessity of predication (in the sense in
which this is conceivable), we need a way to talk about individuals.

HOL Constant

tndividual : PRED — MPROP

VAe individual A = Awe Jae extension A = {a}

‘OAarenotA_thm =F[] I < (All A (are not) A)

There are many theorems which one would naturally prove at this point, to facilitate further proofs
and proof automation, which are not expressible syllogistically. Proof automation depends heavily
on the demonstration of equations, so that proof may proceed by rewriting. But syllogisms are not
suitable for this.

The natural way to proceed in such a case is to continue in this theory doing things which support
proofs of syllogisms without being restrained to syllogisms, and then to have a separate theory in
which the syllogistic claims are presented. Some reflection is desirable on what the philosophical
objectives are and what course will best contribute to those purposes.

Here are some general modal results which I have not noticed in Aristotle as yet.

(-elim_thm =
FOPEP

O_intro_thm =
H[PlE<©P

(-C_thm =
~[OPEoP

5.8 Other Conversions

The following coversions relate to the square of opposition, but I have not yet discovered where they
appear in Aristotle. They work for all the copulas, so I have used a free variable for the copulas.
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—_All_conv_thm =

F (= All A cop B) = Some A (cop not) B
—_All_not_conv_thm2 =

— (= All A (cop not) B) = Some A cop B
—_Some_conv_thm =

— (= Some A cop B) = All A (cop not) B
—_Some_not_conv_thm =

= (— Some A (cop not) B) = All A cop B

They are contraries out of Aristotles square of opposition

Normally theorems like this would be proved closed, but it looks less Aristotelian without the quan-
tifiers and we can imagine they are schemata. To use them it will usually be desirable to close them,
which is easily done, e.g.:

SML

‘ all_¥_intro —_Some_not_conv_thm;

ProofPower output

‘Ual it =Y A cop Be (= Some A (cop not) B) = All A cop B : THM

5.9 Syllogisms
The abolition of accidental predication should result in a syllogistic logic which corresponds to
Aristotle, though the contingency of existence means that the existential fallacies really are fallacies.

We can, by methods similar to those used above obtain automatic proofs of the syllogisms which are
valid in this model.

The details are omitted, but the valid syllogisms have been proven and stored in the theory, see:
Appendix C.

6 Postscript
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A The Theory leibniz01

A.1 Parents

misc?

A.2 Theorems

leitbniz_identity
FVzye (VPoPr < Py =x=y
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B The Theory leibniz02

B.1 Parents

aristotle

B.2 Constants

Some TTV — BOOL
IsPos TTV — BOOL
$a (TermL, BOOL) BR
b1 (TermL, BOOL) BR
$e (TermL, BOOL) BR
$u (TermL, BOOL) BR

Complement TermL — TermlL

B.3 Aliases
o $u : (TermL, BOOL) BR
~ Complement : TermL — TermlL

B.4 Type Abbreviations
TermlL TermlL
B.5 Fixity

Right Infix 300:

B.6 Definitions

Some V ze Some z & — . = pU
IsPos  V ze IsPos © < x = pTrue
a HYAB
e Aa B
< (Vz

e (Bz = pTrue = A z = pTrue)
A (B z = pFalse = A x = pFalse))

i HFVYABeAiBs (Ve Az =Baz= Az =plU)
e FVABeAeB< - AiB
u FYABeAoB< —-AaB
Complement + VYV A«
e ~ A«

= (if A a = pTrue
then pFalse
else if A a = pFalse
then pTrue
else pU)

20



B.7 Theorems

e_conv_thm
1_conv_thm

AeBEF BeA
AiBrBiA
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C The Theory leibniz03

C.1 Parents

misc?

C.2 Constants

extension
actual_world
$not

All

Some

are

O

O

-

$ra

$=a

$<a

$Vq

$3q

$=

$T11
individual

C.3 Aliases

ISUB
PRED

PRED — W

W

COPULA — COPULA

PRED — COPULA — PRED — MPROP
PRED — COPULA — PRED — MPROP
COPULA

MPROP — MPROP

MPROP — MPROP

MPROP — MPROP

(MPROP, MPROP) BR

(MPROP, MPROP) BR

(MPROP, MPROP) BR

(PRED — MPROP) — MPROP

(PRED — MPROP) — MPROP

MPROP LIST — MPROP — BOOL
MPROP LIST — MPROP — BOOL
PRED — MPROP

—q : MPROP — MPROP

$Anq : (MPROP, MPROP) BR

$=, : (MPROP, MPROP) BR

$<, : (MPROP, MPROP) BR

$V, : (PRED — MPROP) — MPROP
$3, : (PRED — MPROP) — MPROP

C.5 Type Abbreviations

w
COPULA
MPROP

w
COPULA
MPROP
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C.6 Fixity

Binder:

Right Infix 100:
Right Infix 200:
Right Infix 210:

Right Infix 220:

Postfix 100:

Na
not

C.7 Definitions

actual_world
extension
not

All

Some

are

II

tndividual

= T
Y prede (pred not) = (A pa t we — pred pa t w)
FVYsrp
e All srp

= (A we V ze z € extension s A 2 € w = 1 z p W)
FVsrp
e Some s T p

= (\ we I ze z € extension s A 2 €E W AT Z P W)
VY iteareit=(\we i€ ertension t)
VY peOp=(\wedwepuw)
FVpedp=(\weV wepw)
=V ope (—p)=(Awe—puw)
FVYpage(pAg=QwepwAquw)
FVpge(p=q)=Awepw=quw)
FVpge(peq=Awepwsquw)

F YV mpfe $Y mpf = (\ we V te mpf t w)
F Y mpfe $3 mpf = (A we I te mpf t w)
FVYipc
elplc

< Fold (A p te p actual_-world A t) Ip T
= ¢ actual_world
FVYipc
elpIl c & (VY we Foll Aptepwnat)lp T= cw)
-V Ae individual A = (A we 3 ae extension A = {a})

C.8 Theorems

are_not_lemma

+ All B (are not) A = All A (are not) B

some_are_lemma

are_convl
are_conv3
<O _conv
CJ_conv

- Some B are A = Some A are B

— [All B (are not) A| II All A (are not) B
+ [Some B are A] I Some A are B
F[PlIQ=1[0P]IIOQ

F[PlI Q=[O0PIIIIQ
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O AllBareA_thm

F ] I ¢ (All B are A)
OAarenotA_thm

] E < (All A (are not) A)
O-elim_thm +— [OJP]EP
(-intro.thm + [P]|E=<CP
(1.0 _thm FOPIECP

—_All_conv_thm
F (= All A cop B) = Some A (cop not) B
—_All_not_conv_thm?2
— (= All A (cop not) B) = Some A cop B
—_Some_conv_thm
— (= Some A cop B) = All A (cop not) B
—_Some_not_conv_thm
— (— Some A (cop not) B) = All A cop B
Barbara_are + [All M are P; All' S are M| IT All'S are P
Celarent_are + [All M (are not) P; All'S are M| IT All' S (are not) P
Darii_are + [All M are P; Some S are M] II Some S are P
Ferio_are - [All M (are not) P; Some S are M|
II Some S (are not) P
Cesare_are - [All P (are not) M; All'S are M| II All'S (are not) P
Camestres_are
- [All P are M; All'S (are not) M| II All'S (are not) P
Festino_are + [All P (are not) M; Some S are M]
II Some S (are not) P
Baroco_are — [All P are M; Some S (are not) M]
II Some S (are not) P
Disamis_are + [Some M are P; All M are S| II Some S are P
Datisi_are + [All M are P; Some M are S] I Some S are P
Bocardo_are + [Some M (are not) P; All M are S|
II Some S (are not) P
Ferison_are + [All M (are not) P; Some M are S|
II Some S (are not) P
Camenes_are + [All P are M; All M (are not) S| II All S (are not) P
Dimaris_are + [Some P are M; All M are S] II Some S are P
Fresison_are + [All P (are not) M; Some M are S|
II Some S (are not) P
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