xl-gft
sqrt_2_irrational_thm
⊢ ¬Sqrt 2. ∈ ℚ
|
|
|
xl-gft
ℂ_sigma_def
⊢ (∀ s• SigmaC s 0 = ℕℂ 0) ∧ (∀s n• SigmaC s(n + 1) = SigmaC s n + s n)
ℂ_poly_def
⊢ ∀c n z• PolyC(c, n) z = SigmaC (λ i• c i * z ^ i) (n + 1)
fta_thm
⊢ ∀c n• c 0 = ℕℂ 0 ∨ ¬n = 0 ∧ ¬c n = ℕℂ 0 ⇒ (∃ z• PolyC(c, n) z = ℕℂ 0)
|
|
|
xl-gft
ℚ_countable_thm
⊢ ∃f : ℕ → ℝ• ∀x• x ∈ ℚ ⇒ ∃p•f p = x
|
|
|
xl-gft
pythagoras_thm
⊢ ∀u v : GA• u ⊥ v ⇒ (u - v)^2 = u^2 + v^2
|
|
|
xl-gft
area_circle_thm
⊢ ∀r• 0. < r ⇒ {(x, y) | Sqrt(x^2 + y^2) ≤ r} Area π * r ^ 2
|
|
|
xl-gft
prime_infinite_thm
⊢ ¬ Prime ∈ Finite
|
|
|
xl-gft
de_moivre_thm
⊢ ∀ x m• (Cos x, Sin x) ^ m = (Cos (ℕℝ m * x), Sin (ℕℝ m * x))
|
|
|
xl-gft
ℝ_uncountable_thm
⊢ ∀X: ℕ → ℝ• ∃x• ∀m• ¬x = X m
|
|
|
xl-gft
schroeder_bernstein_thm
⊢ ∀a b f g• f ∈ a ↣ b ∧ g ∈ b ↣ a ⇒ ∃h• h ∈ a ⤖ b
|
|
|
xl-gft
harmonic_series_divergent_thm
⊢ ∀c• ¬ Sigma (λm• ℕℝ (m+1) -1) -> c
|
|
|
xl-gft
cauchy_mean_thm
⊢ ∀A f a•
A ∈ Finite ∧ ¬A = {} ∧ (∀ x• x ∈ A ⇒ 0. < f x)
⇒ Root (#A) (Π A f) ≤ Σ A f / ℕℝ(#A)
|
|
|
xl-gft
sum_recip_triangulars_thm
⊢ Sigma (λm• 2/((m+1)*(m+2))) -> 2.
|
|
|
xl-gft
binomial_thm
⊢ ∀x y n• (x + y) ^ n = Sigma (λm•ℕℝ(Binomial n m) * x ^ m * y ^ (n - m)) (n+1)
|
|
|
xl-gft
wilson_thm
⊢ ∀ p• 1 < p ⇒ (p ∈ Prime ⇔ (p - 1)! Mod p = p - 1)
|
|
|
xl-gft
ℙ_finite_size_thm
⊢ ∀a• a ∈ Finite ⇒ ℙ a ∈ Finite ∧ #(ℙ a) = 2 ^ #a
|
|
|
xl-gft
cantor_thm
⊢ ∀f : 'a → 'a SET• ∃A• ∀x• ¬f x = A
|
|
|
xl-gft
geometric_sum_thm
⊢ ∀n x•
¬x = 1.
⇒ Sigma (λ m• x ^ m) (n+1) = (1. - x^(n+1)) / (1. - x)
|
|
|
xl-gft
arithmetic_sum_thm
⊢ ∀c d n•
Sigma (λm• c + ℕℝ m * d) n =
1/2 * ℕℝ n * (2. * c + (ℕℝ n - 1.) * d)
|
|
|
xl-gft
euclid_algorithm_thm
⊢ ∀m n•
0 < m ∧ 0 < n
⇒ Gcd m n = if m < n then Gcd m (n-m) else if m = n then m else Gcd (m-n) n
|
|
|
xl-gft
lagrange_cosets_thm
⊢ ∀G H•
G ∈ Group ∧ Car G ∈ Finite ∧ H ∈ Subgroup G
⇒ Car H ∈ Finite ∧ Car(G/H) ∈ Finite ∧ #G = #H * #(G/H)
|
|
|
xl-gft
induction_thm
⊢ ∀ p• p 0 ∧ (∀ m• p m ⇒ p (m + 1)) ⇒ (∀ n• p n)
|
|
|
xl-gft
schwarz_inequality_thm
⊢ ∀f g A•
Supp f ∈ Finite ∧ Supp g ∈ Finite
⇒ Abs (f .v g) ≤ Norm f * Norm g
|
|
|
xl-gft
recip_primes_div_thm
⊢ (∀n•{p | p ∈ Prime ∧ p ≤ n} ∈ Finite)
∧ (∀m•∃n• ℕℝ m ≤ Σ {p | p ∈ Prime ∧ p ≤ n} (λp• ℕℝ p -1))
|
|
|
xl-gft
div_3_rule_thm
⊢ ∀digits; n:ℕ•
3 Divides Σ {i | i < n} (λi•digits i * 10 ^ i) ⇔
3 Divides Σ {i | i < n} (λi•digits i)
|
|
|
This page was prepared as a ProofPower document by Rob Arthan
and translated into HTML in collusion with Roger Jones.
|
|