43 famous theorems in ProofPower
Freek Wiedijk is tracking progress on automated proofs of a list of "100 greatest theorems". 43 of the theorems on the list have been proved so far in ProofPower. The statements of these theorems are listed below. Most of the theorems are taken from the ProofPower-HOL mathematical case studies. See the case studies web page for more information, including documents in PDF format that give the definitions on which the theorems depend.
1. The Irrationality of the Square Root of 2

xl-gft
sqrt_2_irrational_thm
⊢ ¬Sqrt 2. ∈ ℚ

2. The Fundamental Theorem of Algebra

xl-gft
ℂ_sigma_def
⊢ (∀ s• SigmaC s 0 = ℕℂ 0) ∧ (∀s n• SigmaC s(n + 1) = SigmaC s n + s n)

ℂ_poly_def
⊢ ∀c n z• PolyC(c, n) z = SigmaC (λ i• c i * z ^ i) (n + 1)

fta_thm
⊢ ∀c n• c 0 = ℕℂ 0 ∨ ¬n = 0 ∧ ¬c n = ℕℂ 0 ⇒ (∃ z• PolyC(c, n) z = ℕℂ 0)

3. The Denumerability of the Rational Numbers

xl-gft
ℚ_countable_thm
⊢ ∃f : ℕ → ℝ• ∀x• x ∈ ℚ ⇒ ∃p•f p = x

4. Pythagorean Theorem

xl-gft
pythagoras_thm
⊢ ∀u v : GA• u ⊥ v ⇒ (u - v)^2 = u^2 + v^2

9. The Area of a Circle

xl-gft
area_circle_thm
⊢ ∀r• 0. < r ⇒ {(x, y) | Sqrt(x^2 + y^2) ≤ r} Area π * r ^ 2

11. The Infinitude of Primes

xl-gft
prime_infinite_thm
⊢ ¬ Prime ∈ Finite

15. Fundamental Theorem of Integral Calculus

xl-gft
int_deriv_thm
⊢ ∀a b sf f•
fttaba < b
fttab(∀x• a < x ∧ x < b ⇒ (sf Deriv f x) x)
fttab(sf Cts a) ∧ (sf Cts b)
fttab(f Int sf b - sf a) (ClosedInterval a b)

17. De Moivre's Theorem

xl-gft
de_moivre_thm
⊢ ∀ x m• (Cos x, Sin x) ^ m = (Cos (ℕℝ m * x), Sin (ℕℝ m * x))

20. All primes (1 mod 4) equal the sum of two squares

xl-gft
two_squares_thm
⊢ ∀p m•
fttabp ∈ Prime
fttabp = 4*m + 1
fttab∃a b• p = a^2 + b^2

22. The Non-Denumerability of the Continuum

xl-gft
ℝ_uncountable_thm
⊢ ∀X: ℕ → ℝ• ∃x• ∀m• ¬x = X m

23. Formula for Pythagorean Triples

xl-gft
pythagorean_triples_thm
⊢ ∀a b c: ℕ•
fttaba^2 + b^2 = c^2
fttab∃m n d•
fttabfttab{a; b} = {d*n*(2*m + n); 2*d*m*(m + n)}
fttabfttabc = d*(m^2 + (m + n)^2)fttab

25. Schroeder-Bernstein Theorem

xl-gft
schroeder_bernstein_thm
⊢ ∀a b f g• f ∈ a ↣ b ∧ g ∈ b ↣ a ⇒ ∃h• h ∈ a ⤖ b

30. The Ballot Problem

xl-gft
ballot_thm
⊢ ∀m n•
fttabletfttabS = BallotCounts m n
fttabin letfttabX = {s | s ∈ S ∧ ∀ i• ℕ⿿ 0 < s (i+1)}
fttabin
fttab fttabS ∈ Finite
fttabfttab¬#S = 0
fttabfttabX ⊆ S
fttabfttab(n < m ⇒ #X / #S = (m - n) / (m + n))

31. Ramsey's Theorem

xl-gft
fin_exp_2_ramsey_thm
⊢ ∀a b • ∃n • ∀(V, E) •
fttab(V, E) ∈ symg ∧ V ∈ Finite ∧ #V ≥ n
fttab(∃ C • C clique_of (V,E) ∧ #C = a ∨ C indep_of (V,E) ∧ #C = b)

infinite_ramsey_thm
⊢ ∀n X C; m : ℕ•
fttabX ∈ Infinite ∧ (∀a• C a < m)
fttab(∃Y c•fttabY ⊆ X ∧ Y ∈ Infinite ∧ c < m
fttabfttab∀a• a ⊆ Y ∧ a ∈ Finite ∧ #a = n ⇒ C a = c)

34. Divergence of the Harmonic Series

xl-gft
harmonic_series_divergent_thm
⊢ ∀c• ¬ Sigma (λm• ℕℝ (m+1) -1) -> c

35. Taylor's Theorem

xl-gft
taylor_thm
⊢ ∀n f D a b•
fttaba < b
fttabD 0 = f
fttab(∀ m x• m ≤ n ∧ a ≤ x ∧ x ≤ b ⇒ D m Cts x)
fttab(∀ m x• m ≤ n ∧ a < x ∧ x < b ⇒ (D m Deriv D (m + 1) x) x)
fttab∃x• a < x ∧ x < b
fttabf b =
fttabPowerSeries (λm• D m a * ℕℝ(m!)-1) (n+1) (b-a) +
fttabD (n+1) x * (b-a) ^ (n+1) * ℕℝ((n+1)!)-1

38. Arithmetic Mean/Geometric Mean

xl-gft
cauchy_mean_thm
⊢ ∀A f a•
fttabA ∈ Finite ∧ ¬A = {} ∧ (∀ x• x ∈ A ⇒ 0. < f x)
fttabRoot (#A) (Π A f) ≤ Σ A f / ℕℝ(#A)

40. Minkowski's Fundamental Theorem

xl-gft
minkowski_thm
⊢ ∀A a•
fttabA ∈ Convex
fttabA ∈ Bounded
fttab¬A = {}
fttab(∀x y• (x, y) ∈ A ⇒ (~x, ~y) ∈ A)
fttabA Area a
fttaba > 4.
fttab∃i j•
fttab fttab(⿿ℝ i, ⿿ℝ j) ∈ A
fttabfttab¬(⿿ℝ i, ⿿ℝ j) = (0., 0.)

42. Sum of the Reciprocals of the Triangular Numbers

xl-gft
sum_recip_triangulars_thm
⊢ Sigma (λm• 2/((m+1)*(m+2))) -> 2.

44. The Binomial Theorem

xl-gft
binomial_thm
⊢ ∀x y n• (x + y) ^ n = Sigma (λm•ℕℝ(Binomial n m) * x ^ m * y ^ (n - m)) (n+1)

51. Wilson's Theorem

xl-gft
wilson_thm
⊢ ∀ p• 1 < p ⇒ (p ∈ Prime ⇔ (p - 1)! Mod p = p - 1)

52. The Number of Subsets of a Set

xl-gft
ℙ_finite_size_thm
⊢ ∀a• a ∈ Finite ⇒ ℙ a ∈ Finite ∧ #(ℙ a) = 2 ^ #a

58. Formula for the Number of Combinations

xl-gft
combinations_finite_size_thm
⊢ ∀A n m•
fttabA ∈ Finite ∧ #A = n
fttab{X | X ⊆ A ∧ #X = m} ∈ Finite
fttab#{X | X ⊆ A ∧ #X = m} = Binomial n m

60. Bezout's Theorem

xl-gft
bezout_thm
⊢ ∀m n•
fttab0 < m ∧ 0 < n
fttab(∃a b• b*n ≤ a*m ∧ Gcd m n = a*m - b*n)
fttab(∃a b• a*m ≤ b*n ∧ Gcd m n = b*n - a*m)

63. Cantor's Theorem

xl-gft
cantor_thm
⊢ ∀f : 'a → 'a SET• ∃A• ∀x• ¬f x = A

64. L'Hospital's Rule

xl-gft
l'hopital_lim_right_thm
⊢ ∀f df g dg a b c•
fttaba < b
fttabf a = 0.
fttabg a = 0.
fttab(∀x•a ≤ x ∧ x < b ⇒ f Cts x)
fttab(∀x•a < x ∧ x < b ⇒ (f Deriv df x) x)
fttab(∀x•a ≤ x ∧ x < b ⇒ g Cts x)
fttab(∀x•a < x ∧ x < b ⇒ (g Deriv dg x) x)
fttab(∀x•a < x ∧ x < b ⇒ ¬dg x = 0.)
fttab((λx• df x * dg x -1) +#-> c) a
fttab((λx• f x * g x -1) +#-> c) a


xl-gft
l'hopital_lim_infinity_thm
⊢ ∀f df g dg a c•
fttabg -+#>+#
fttab(∀x•a < x ⇒ (f Deriv df x) x)
fttab(∀x•a < x ⇒ (g Deriv dg x) x)
fttab(∀x•a < x ⇒ ¬dg x = 0.)
fttab(λx• df x * dg x -1) -+#> c
fttab(λx• f x * g x -1) -+#> c

66. Sum of a Geometric Series

xl-gft
geometric_sum_thm
⊢ ∀n x•
fttab¬x = 1.
fttabSigma (λ m• x ^ m) (n+1) = (1. - x^(n+1)) / (1. - x)

68. Sum of an arithmetic series

xl-gft
arithmetic_sum_thm
⊢ ∀c d n•
fttabSigma (λm• c + ℕℝ m * d) n =
fttab1/2 * ℕℝ n * (2. * c + (ℕℝ n - 1.) * d)

69. Greatest Common Divisor Algorithm

xl-gft
euclid_algorithm_thm
⊢ ∀m n•
fttab0 < m ∧ 0 < n
fttabGcd m n = if m < n then Gcd m (n-m) else if m = n then m else Gcd (m-n) n


xl-gft
gcd_def
⊢ ∀m n•
fttab0 < m ∧ 0 < n
fttabGcd m n Divides m ∧ Gcd m n Divides n
fttab(∀d•
fttab fttabd Divides m ∧ d Divides n
fttabfttabd Divides Gcd m n)

71. Order of a Subgroup

xl-gft
lagrange_cosets_thm
⊢ ∀G H•
fttabG ∈ Group ∧ Car G ∈ Finite ∧ H ∈ Subgroup G
fttabCar H ∈ Finite ∧ Car(G/H) ∈ Finite ∧ #G = #H * #(G/H)

74. The Principle of Mathematical Induction

xl-gft
induction_thm
⊢ ∀ p• p 0 ∧ (∀ m• p m ⇒ p (m + 1)) ⇒ (∀ n• p n)

75. The Mean Value Theorem

xl-gft
cauchy_mean_value_thm
⊢ ∀f df g dg a b•
fttaba < b
fttab(∀x•a ≤ x ∧ x ≤ b ⇒ f Cts x)
fttab(∀x•a < x ∧ x < b ⇒ (f Deriv df x) x)
fttab(∀x•a ≤ x ∧ x ≤ b ⇒ g Cts x)
fttab(∀x•a < x ∧ x < b ⇒ (g Deriv dg x) x)
fttab(∃x• a < x ∧ x < b ∧ (dg x)*(f b - f a) = (df x)*(g b - g a))


xl-gft
mean_value_thm
⊢ ∀f df a b•
fttaba < b
fttab(∀x•a ≤ x ∧ x ≤ b ⇒ f Cts x)
fttab(∀x•a < x ∧ x < b ⇒ (f Deriv df x) x)
fttab(∃x•a < x ∧ x < b ∧ f b - f a = (b - a) * df x)

78. The Cauchy-Schwarz Inequality

xl-gft
schwarz_inequality_thm
⊢ ∀f g A•
fttabSupp f ∈ Finite ∧ Supp g ∈ Finite
fttabAbs (f .v g) ≤ Norm f * Norm g

79. The Intermediate Value Theorem

xl-gft
intermediate_value_thm
⊢ ∀f a b•
fttaba < b
fttab(∀x•a ≤ x ∧ x ≤ b ⇒ f Cts x)
fttab(∀y•
fttab fttab(f a < y ∧ y < f b ∨ f b < y ∧ y < f a)
fttabfttab∃x• a < x ∧ x < b ∧ f x = y)

80. The Fundamental Theorem of Arithmetic

xl-gft
unique_factorisation_thm
⊢ ∀m•
fttab0 < m
fttab1 e•fttab{k | ¬e k = 0} ∈ Finite ∧ {k | ¬e k = 0} ⊆ Prime
fttabfttabm = Π {k | ¬e k = 0} (λp• p ^ e p)

81. Divergence of the Prime Reciprocal Series

xl-gft
recip_primes_div_thm
fttab(∀n•{p | p ∈ Prime ∧ p ≤ n} ∈ Finite)
fttab(∀m•∃n• ℕℝ m ≤ Σ {p | p ∈ Prime ∧ p ≤ n} (λp• ℕℝ p -1))

85. Divisibility by 3 Rule

xl-gft
div_3_rule_thm
⊢ ∀digits; n:ℕ•
fttab3 Divides Σ {i | i < n} (λi•digits i * 10 ^ i) ⇔
fttab3 Divides Σ {i | i < n} (λi•digits i)

89. The Factor and Remainder Theorems

xl-gft
poly_factor_thm
⊢ ∀l1 c•
fttab¬l1 = []
fttabPolyEval l1 c = 0.
fttab∃l2•
fttab fttabLength l2 < Length l1
fttabfttab(λx• PolyEval l1 x) = (λx• (x - c)*PolyEval l2 x)


xl-gft
poly_remainder_thm
⊢ ∀l1 c•
fttab¬l1 = []
fttab∃l2•
fttab fttabLength l2 < Length l1
fttabfttab(λx• PolyEval l1 x) = (λx• (x - c)*PolyEval l2 x + PolyEval l1 c)

91. The Triangle Inequality

xl-gft
triangle_inequality_thm
⊢ ∀f g•
fttabSupp f ∈ Finite ∈ Finite ∧ Supp g ∈ Finite
fttabSupp (λx• f x + g x) ∈ Finite
fttabNorm (λ x• f x + g x) ≤ Norm f + Norm g

93. The Birthday Problem

xl-gft
birthdays_thm

fttabletfttabS = {L | Elems L ⊆ {i | 1 ≤ i ∧ i ≤ 365} ∧ # L = 23}
fttabin letfttabX = {L | L ∈ S ∧ ¬L ∈ Distinct}
fttabin
fttab fttabS ∈ Finite
fttabfttab¬#S = 0
fttabfttabX ⊆ S
fttabfttab#X / #S > 1/2

96. Principle of Inclusion/Exclusion

xl-gft
size_inc_exc_thm
⊢ ∀I U A•
fttabI ∈ Finite ∧ ¬I = {}
fttab(∀i• i ∈ I ⇒ U i ∈ Finite)
fttabA = ⋃{B | ∃i• i ∈ I ∧ B = U i}
fttabℕℝ(# A) =
fttabΣ
fttab(ℙI \ {{}})
fttab(λJ• ~1. ^ (#J + 1) * ℕℝ(# (⋂{B | ∃j• j ∈ J ∧ B = U j})))

99. Buffon Needle Problem

xl-gft
buffon_needle_thm

fttabletfttabS = {(θ, d) | θ ∈ ClosedInterval 0. π ∧ d ∈ ClosedInterval 0. 1.}
fttabin letfttabx_axis = {(x, y) | y = 0.}
fttabin letfttabneedle(θ, d) =
fttabfttab{(x, y) | ∃t• t ∈ ClosedInterval 0. 1.
fttabfttabfttab∧ x = t * Cos θ ∧ y = d - t * Sin θ}
fttabin letfttabX = {(θ, d) | (θ, d) ∈ S ∧ ¬needle(θ, d) ∩ x_axis = {}}
fttabin
fttab fttabX ⊆ S
fttabfttab∃x s•
fttab fttab fttab¬s = 0.
fttab fttabfttabX Area x
fttab fttabfttabS Area s
fttab fttabfttabx / s = 2. / π

100. Descartes Rule of Signs

xl-gft
descartes_rule_thm
⊢ ∀f•
fttabf ∈ PolyFunc
fttab¬f = (λx• 0.)
fttab∃k•
fttabSignChanges (Coeffs f) =
fttabΣ {r | 0. < r ∧ r ∈ Roots f} (λr• RootMultiplicity f r) + 2*k

This page was prepared as a ProofPower document by Rob Arthan and translated into HTML in collusion with Roger Jones.

up quick index

privacy policy

Created:

$Id: PP100thms.doc,v 1.24 2017/10/11 16:59:10 rda Exp $

V