Problems with Z

Roger Bishop Jones
ICL Defence Systems
1. Z REFERENCE DOCUMENTATION

A What is the best reference material currently available covering each of the following areas:

1 Concrete Syntax
2 Type System
3 Semantics
4 Proof Theory
5 Methodology

B What further developments to such reference material are anticipated?

C Is there any way we can be sure of being kept up to date on such material?

D Is there in progress or in prospect any standardisation activity for Z?

E If Z is still fluid, can we exert any influence on the direction of development, and if so, how?
2. THE SYNTAX OF Z

A Why are there two different signs for introducing definitions (\(\hat{=}, :=\))?

B When is infix/prefix usage permitted?

C What is the current story on boxes?

3. THE Z TYPE-SYSTEM

A Under what conditions are recursive type definitions legal?

B Is \(\mathbb{N}\) a built in type or not? (also seq)

C We infer that the things after colon’s are arbitrary sets, is this correct?

D Are "dependent" schema types permitted?

E Any hope of "type inheritance" for schema types?

F What are the rules for type parameterisation?
4. THE SEMANTICS OF Z

A Disjoint Union

B Recursive types

C N and seq

D The use of schema types for specifying operations.

E The semantic significance of decorations.

5. PROOF THEORY

A What is it?

B How do we ensure or demonstrate consistency of specifications?

6. METHODOLOGY

A What is it?
7. SPECIFYING OPERATIONS AS FUNCTIONS

Type of Object
AUTO

Type of Property
P AUTO

Type of Operation
\[
\text{IN} \times \text{STATE} \rightarrow \text{STATE} \times \text{OUT} \\
\subseteq \mathcal{P}(\text{IN} \times \text{STATE} \times \text{STATE} \times \text{OUT})
\]

Type of Property of Operation
\[
\mathcal{P} (\text{IN} \times \text{STATE} \rightarrow \text{STATE} \times \text{OUT})
\]

Type of Non-Deterministic Operation
\[
\text{IN} \times \text{STATE} \rightarrow \mathcal{P} (\text{STATE} \times \text{OUT})
\]

Type of Property of Non-Deterministic Operation
\[
\mathcal{P} (\text{IN} \times \text{STATE} \rightarrow \mathcal{P} (\text{STATE} \times \text{OUT}))
\]

Type of Partial Operation
\[
\text{IN} \times \text{STATE} \rightarrow \text{STATE} \times \text{OUT}
\]

Type of Property of Partial Operation
\[
\mathcal{P} (\text{IN} \times \text{STATE} \rightarrow \text{STATE} \times \text{OUT})
\]

Type of Partial Non-Deterministic Operation
\[
\text{IN} \times \text{STATE} \rightarrow \mathcal{P} (\text{STATE} \times \text{OUT})
\]

Type of Property of Partial Non-Deterministic Operation
\[
\mathcal{P} (\text{IN} \times \text{STATE} \rightarrow \mathcal{P} (\text{STATE} \times \text{OUT}))
\]
8. SPECIFYING OPERATIONS USING SCHEMA TYPES

\[\Delta \text{STATE} \equiv [i:\text{IN}; s,s':\text{STATE}; o:\text{OUT}] \]
\[\equiv \text{IN} \times \text{STATE} \times \text{STATE} \times \text{OUT} \]

Not necessarily an operation at all. Certainly not a loose specification of an operation.

Can we find any interpretations of schema types as specifications of operations?

First define the type of functional subtypes of the schema type \(\Delta \text{STATE} \).

\[\text{PAUTO} \equiv \{x: \mathbb{P} \Delta \text{STATE} | \]
\[\forall y, z: \Delta \text{STATE}. (y \in x \land z \in x \land y.i = z.i \land y.s = z.s) \Rightarrow y.o = z.o \land y.s' = z.s' \} \]

We could then interpret a schema type as a lose specification denoting all of its (partial) functional subtypes.

Alternatively we might only wish to admit total functional subtypes:

\[\text{AUTO} \equiv \{x: \text{PAUTO} | \forall i: \text{IN}, s: \text{STATE}. \]
\[\exists s': \text{STATE}, o: \text{OUT}, y: \Delta \text{STATE}. \]
\[y.i = i \land y.s = s \land y.s' = s' \land y.o = o \} \]
A further interpretation is as a single non-deterministic operation: