Summary:
This document contains a formal development of a combinatory type theory in Higher Order Logic (HOL).
1. INTRODUCTION

The combinatory terms are the free algebra generated by the 2-ary operator Ap from the 0-ary constants K, S, Ξ and a countable set of 0-ary variables (V^n), for n ∈ num.

Pure combinators are combinatory terms in which there occurs no 0-ary constituents except K and S.

The combinators are our primitive language in which we assert propositions. The subject matter of these propositions is the pure combinators, and ranges, packs, types, and type_assignments which may be represented, or approximated by pure combinators.

ML

new_theory('076');;

2. REPRESENTING COMBINATORS BY NUMBERS

In order to use HOL as a metalanguage we must determine some way to represent the objects in the language as objects in HOL.

This is done using the type "num" consisting of the natural numbers 0,1,2... 0,2 and 4 represent respectively K, S, Ξ, and the remaining even numbers are used to represent variables. Odd numbers are used to represent applications, using the bijection: (n,m)->(n+m)(n+m)+(2nm)+n+3m+1. Projections are defined, pro-tem, using the choice function μ.

ML

new_definition('K_DEF',
 "K = 0");;
new_definition('S_DEF',
 "S = 2");;
new_definition('Ξ_DEF',
 "Ξ = 4");;
3. CONVERSION

The combinators are to be used to represent functions over combinators. The first step in showing how this is done consists in defining an equivalence relation over the combinatory terms. Operationally the semantics of combinators as representing functions is determined by a graph reduction process. If this graph reduction process is regarded as preserving equality in some way, then the strongest equality compatible with the normal reduction rule for K and S is the equivalence relation which we define below as 'conv'.

the basic reduction rules for K and S. We therefore first define an equivalence relation, then an applicative relation, the relation of immediate reducibility, and finally 'conv'.

3.1. Equivalence Relations

```ml
let relation = "*:num→*num→bool";;
let numeric_relation = "*:num→num→bool";;
```
Combinatory Type Theory in HOL

3.2. Applicative Relations

 new_definition('applicative_DEF', "(applicative: numeric_relation → bool) r =
 ∀x x' y y'. (r x x' ∧ (r y y' (y=y')) ((x=x') ∧ (r y y'))
 $contains r (x Ap y) (x' Ap y')");;

 new_definition('applicative_closure_DEF',
 "(applicative_closure: numeric_relation → numeric_relation) r =
 µs. applicative s ∧ s contains r ∧
 ∀t: numeric_relation. applicative t ∧ t contains r $contains t contains s");;

3.3. Immediate Reducibility and Conversion

 new_definition('prim_red_DEF', "(prim_red: num → num → bool) x y =
 (∃u. x = (K Ap y) Ap u)
 (∃w. x = (S Ap w v) Ap w");;

 new_infix_definition('im_red_DEF', "($im_red: num → bool) = (applicative_closure prim_red)";;

 new_infix_definition('conv_DEF', "($conv: num → bool) = (equivalence_closure $im_red)";;

DBC/RBJ/076 Issue 0.1 Page 5
4. SUBSTITUTION

```ml
new_definition('subst_DEF',"(subst:num→num→num→num) =
  \mu f. \forall x y z.
    ((z = y) \Rightarrow (f x y z = x)) ∧
    (\neg(z = y) \Rightarrow
      ((is_atom z) \Rightarrow (f x y z = z)) ∧
      ((is_Ap z) \Rightarrow (f x y z = ((f x y (fun z)) Ap (f x y (arg z)))))");
new_definition('value_DEF',"(value:num→num→num→bool) x y z =
  (subst y \Xi x) conv z");
```

5. ENCODINGS

```ml
new_definition('I_DEF',"I = (S Ap K) Ap K");
new_definition('cabs_DEF',"(cabs:num→num→num→num) =
  \mu f. \forall var body.
    ((Va var = body) \Rightarrow (f var body = I)) ∧
    (\neg(Va var = body) \Rightarrow
      ((is_atom body \Rightarrow (f var body = body)) ∧
      (is_Ap body \Rightarrow
        (f var body = (f var (fun body)) Ap (f var (arg body)))))");
new_prim_rec_definition('cabsn_DEF',"(cabsn 0 n = n) ∧
  (cabsn (SUC m) n = cabs m (cabsn m n))");
```

```ml
new_definition('ctrue_DEF',"ctrue = K");
new_definition('cfalse_DEF',"cfalse = cabsn 1 (Va 0)");
new_definition('cif_DEF',"cif x y z = ((x Ap y) Ap z)");
new_definition('cpair_DEF',"cpair x y = cabs 0 (cif (Va 0) x y)");
new_definition('cfst_DEF',"cfst x = x Ap ctrue");
new_definition('csnd_DEF',"csnd x = x Ap cfalse");
```
6. INTERPRETATIONS

I now want to define the acceptable interpretations of Ξ. Informally Ξ should be understood as a function which takes two encodings of combinators and returns true if the range represented by the first is contained in the range represented by the second, otherwise it returns false. This function is not recursive, so we have to accept an approximation. An approximation is a function which never yields an incorrect truth value, but may sometimes yield no truth value.

We may use combinators to represent and number of different things.

6.1. Ranges

First a combinator may represent a range, by which should be understood a range of quantification.

ML

let range = ":num→bool";;

ML

new_definition(‘comb_to_range’,”(comb_to_range:num→ˆrange) x y =
 (x Ap (encode y)) conv ctrue”);;

A fundamental relation over ranges is inclusion:

ML

new_definition(‘rnge_incl’,”(rnge_incl:ˆrange→ˆrange→bool) r s =
 (∀x. r x ⇔ s x)”);;

Ξ is intended to approximate ‘rnge_incl’ in the object language. Since ‘rnge_incl’ is not recursive (or recursively enumerable), we have to accept computable approximations.

Second a combinator may represent a partial characteristic function, which we abbreviate, pac.

ML

let pac = ":num→(bool#bool)”;;

The type of an approximation is a partial relation over ranges:
let approxim = ":\range -> \range -> (bool # bool)";

And the perfect 'approximation' to Ξ is:

new_definition('pox Ξ, "(pox Ξ, \approxim) r s =
 let b = range_incl r s in (b, \neg b)");

Since every combinator represents a range this induces a partial relation over combinators as follows:

let approximc = ":\num -> \num -> (bool # bool)";

new_definition('pox Ξ c, "(pox Ξ c, \approximc) x y =
 pox Ξ (comb_to_range x) (comb_to_range y)");

We now define a partial ordering over these approximations:

new_infix_definition('better_than', "($\text{better_than} : \approximc \to \approximc \to \text{bool}) a b =
 \forall (x : \num) (y : \num). let a_yes = FST (a x y) in
 let a_no = SND (a x y) in
 let b_yes = FST (b x y) in
 let b_no = SND (b x y) in
 ((b_yes \leq a_yes) \land (b_no \leq a_no)) ");

A combinator when regarded as a partial characteristic function over encoded terms determines a 'partial relation' over combinators as follows:

new_definition('comb_to_prel', "(comb_to_prel : \num \to \approximc) n x y =
 ((n Ap (encode x) Ap (encode y)) conv true,
 (n Ap (encode x) Ap (encode y)) conv false)");

We can now define the notion of approximation to Ξ as any combinator which poxc is 'better_than':

new_definition('approx Ξ, "(approx $\Xi : \num \to \text{bool}) x =
 poxΞc better_than (comb_to_prel x)";
new_infix_definition('better_than','($better_than:num→num→bool) x y =
 approxΞ x ∧ (comb_to_prel x) better_than (comb_to_prel y)\);;
new_infix_definition('true_for','($true_for:num→num→bool) x y =
 (subst y Ξ x) conv ctrue\);;
new_definition('valid',"(valid:num→bool) x =
 ∃y. approxΞ y ∧
 (∀z. z better_than y ≡ x true_for z)\);;

7. PACS
A pac is a partial characteristic function, or a pair of disjoint recursively enumerable sets.

8. TYPES
The next objective is to define what a type is in this system, and then to define a useful set of type constructors. Informally a type is an ordered pair. The first element is a PAC, the second an equivalence relationship defined over the RANGE of the PAC.

9. LISTING OF THEORY
The Theory 076
Parents -- HOL

Constants --
 K "::num" S "::num" Ξ "::num" Va "::num → num"
 is_atom "::num → bool" is_Ap "::num → bool"
 fun "::num → ::num" arg "::num → ::num"
 reflexive "((::num → ((::num → ::bool))) → ::bool"
 symmetric "((::num → ((::num → ::bool))) → ::bool"
 transitive "((::num → ((::num → ::bool))) → ::bool"
 equivalence "((::num → ((::num → ::bool))) → ::bool"
 equivalence_closure "((::num → ((::num → ::bool))) → ((::num → ((::num → ::bool)))"
 applicative "((::num → ::bool)) → ((::num → ((::num → ::bool)))"
 applicative_closure
 "((::num → ::bool)) → ((::num → ::bool))"
 prim_red "::num → ((::num → ::bool))"
 subst "::num → (::num → ::num))"
 value "::num → ((::num → ::bool))" I "::num"
 cabs "::num → ::num)"
 cabsn
 "::num → (::num → ::num))"
 crue "::num" cfalse
 "::num"
 cif "::num → (::num → ::num))"
 cpair "::num → (::num → ::num)"
 csnd "::num → ::num)"
 encode "::num → ::num)"
 comb_to_range "::num → (::num → ::bool)"
 rnge_incl "((::num → ::bool) → ((::num → ::bool)) → ::bool"
 pox Ξ "((::num → ::bool) → ((::num → ::bool)) → ::bool)"
 pox cΞ "::num → (::num → ::bool # ::bool))"
 comb_to_prel "::num → (::num → ::bool # ::bool))"
 approx Ξ "::num → ::bool)" valid "::num → ::bool"

Curried Infixes --
 Ap "::num → ((::num → ::num))"
 contains
 "((::num → (::num → ::bool)) → ((::num → (::num → ::bool)) → ::bool)"
 im_red "::num → (::num → ::bool)" conv "::num → (::num → ::bool)"
 better_than
 "((::num → (::num → ::bool # ::bool)) →
 ((::num → (::num → ::bool # ::bool)) → ::bool)"
 better_Ξ_than "::num → (::num → ::bool)"
 true_for "::num → (::num → ::bool)"

Definitions --
 K_DEF K = 0
 S_DEF S = 2
 Ξ_DEF Ξ = 4
 Va_DEF Va n = 6 + (2 * n)
 Ap_DEF
 n Ap m =
 (n * n) + ((m * m) + ((2 * (n * m)) + (n + ((3 * m) + 1))))
is_atom_DEF is_atom n = (∃x. n = 2 * x)
is_Ap_DEF is_Ap n = ¬ is_atom n
fun_DEF fun n = (µx. 3y. n = x A py)
arg_DEF arg n = (µy. 3x. n = x A p y)
reflexive_DEF reflexive r = (∀x. r x x)
symmetric_DEF symmetric r = (∀x y. r x y ↔ r y x)
transitive_DEF transitive r = (∀x y z. r x y ∧ r y z → r x z)
equivalence_DEF
 equivalence r = reflexive r ∧ symmetric r ∧ transitive r
contains_DEF r1 contains r2 = (∀xy. r2xy → r1 x y)
equivalence_closure_DEF
 equivalence_closure r =
 (µs.
 equivalence s ∧
 s contains r ∧
 (∀t. equivalence t ∧ t contains r ↔ t contains s))
applicative_DEF
 applicative r =
 equivalence r ∧
 (∀x' y'. r x' y' → r(x A p y)(x' A p y'))
applicative_closure_DEF
 applicative_closure r =
 (µs.
 applicative s ∧
 s contains r ∧
 (∀t. applicative t ∧ t contains r ↔ t contains s))
prim_red_DEF
 prim_red x y =
im_red_DEF $im_red = applicative_closure prim_red
conv_DEF $conv = equivalence_closure $im_red
subst_DEF
 subst =
 (µf.
 ∀x y z.
 ((z = y) ↔ (f x y z = x)) ∧
 (¬(z = y) ↔
 (is_atom z ↔ (f x y z = z)) ∧
 (is_Ap z ↔ (f x y z = (f x y (fun z)) A p (f x y (arg z))))))
value_DEF
 value x y z = (subst y Z x) conv z
I_DEF I = (S A p K) A p K
cabs_DEF
 cabs =
 (µf.
 ∀var body.
 ((Va var = body) ↔ (f var body = I)) ∧
 (¬(Va var = body) ↔
 (µx. 3y. n = x A p y))

DBC/RBJ/076 Issue 0.1 Page 11
(is_atom body \mapsto (f var body = body)) \land
 (is_Ap body \mapsto
 (f var body = (f var(fun body)) Ap (f var(arg body))))

cabsn_DEF_DEF
 cabsn = PRIM_REC(λn. (λg00012 m n. cabs m(g00012 n))
ctrue_DEF ctrue = K
cfalse_DEF cfalse = cabs 1(V a0)
cif_DEF cif x y z = (x Ap y) Ap z
cpair_DEF cpair x y z = cabs 0(cif(V a0)x y)
cfst_DEF cfst x = x Ap ctrue
csnd_DEF csnd x = x Ap cfalse
cencode_DEF encode =
 (\mu f.
 \forall x.
 ((x = K) \mapsto (f x = cpair ctrue ctrue)) \land
 ((x = S) \mapsto (f x = cpair ctrue cfalse)) \land
 (is_Ap x \mapsto (f x = cpair cfalse(cpair(f(cfst x))(f(csnd x))))))

comb_to_range(comb_to_range x y = (x Ap (encode y)) conv ctrue
rngne_incl(rngne_incl r s = (\forallx. r x \mapsto s x))
pox\exists r s = (let b = rngne_incl r s in b,\neg b)
pox\exists c x y = pox\exists(comb_to_range x)(comb_to_range y)
better_than
a better_than b =
 (\forallx. y.
 let a_yes = FST(a x y)
in
 let a_no = SND(a x y)
in
 let b_yes = FST(b x y)
in
 let b_no = SND(b x y) in (b_yes \mapsto a_yes) \land (b_no \mapsto a_no))
comb_to_prel
 comb_to_prel n x y =
 (n Ap ((encode x) Ap (encode y))) conv ctrue,
 (n Ap ((encode x) Ap (encode y))) conv cfalse
approx\exists approx\exists x = pox\exists c better_than (comb_to_prel x)
$\$better_\exists_\$_ than
 x better_\exists_\$ than y =
 approx\exists x \land (comb_to_prel x) better_than (comb_to_prel y)
true_for x true_for y = (subst y \exists x) conv ctrue
valid
 valid x =
 (\existsy. approx\exists y \land (\forallz. z better_\exists_\$ than y \mapsto x true_for z))

Theorems --
cabsn_DEF (cabsn 0 n = n) \land (cabsn(SUC m)n = cabs m(cabsn m n))