Pure function theory part 3

Roger Bishop Jones
ICL Defence Systems

ABSTRACT

This document consists of the third part of a pure theory of (partial) functions.

1. INTRODUCTION

<table>
<thead>
<tr>
<th>ML</th>
</tr>
</thead>
<tbody>
<tr>
<td>new_theory 'pf129';;</td>
</tr>
<tr>
<td>new_parent 'pf128';;</td>
</tr>
<tr>
<td>load '/escher/usr2/projects/infra/pholfiles/TAUT';;</td>
</tr>
<tr>
<td>map load_definitions ['zf120'; 'zf122'; 'pf123'; 'pf128'];;</td>
</tr>
<tr>
<td>map load_theorems ['zf120'; 'zf122'; 'pf123'; 'pf128'];;</td>
</tr>
<tr>
<td>map load_axioms ['zf120'; 'zf122'; 'pf123'; 'pf128'];;</td>
</tr>
<tr>
<td>map delete_cache ['zf120'; 'zf122'; 'pf123'; 'pf128'];;</td>
</tr>
<tr>
<td>let NOT_FORALL_TAC = REWRITE_TAC [NOT_FORALL] THEN BETA_TAC;;</td>
</tr>
<tr>
<td>let PURE_NOT_FORALL_TAC = PURE_REWRITE_TAC [NOT_FORALL] THEN BETA_TAC;;</td>
</tr>
<tr>
<td>let NOT_EXISTS_TAC = REWRITE_TAC [NOT_EXISTS] THEN BETA_TAC;;</td>
</tr>
<tr>
<td>let PURE_NOT_EXISTS_TAC = PURE_REWRITE_TAC [NOT_EXISTS] THEN BETA_TAC;;</td>
</tr>
<tr>
<td>let NEW_GOAL_TAC t = RMP_TAC t THENL [STRIP_TAC; ALL_TAC];;</td>
</tr>
<tr>
<td>let new_goal t = expand (NEW_GOAL_TAC t);;</td>
</tr>
<tr>
<td>let NEW_GOAL_PROOF_TAC t p = RMP_TAC t THENL [STRIP_TAC THEN p; ALL_TAC];;</td>
</tr>
<tr>
<td>let new_goal_proof t p = expand (NEW_GOAL_PROOF_TAC t p);;</td>
</tr>
<tr>
<td>let MASSUMP = map ASSUMP;;</td>
</tr>
<tr>
<td>let OREWRITE_TAC t = REWRITE_TAC[t];;</td>
</tr>
</tbody>
</table>
2. UNION AND CHOICE

The following definition of \bigcup serves two roles. If applied to a set of sets, i.e. something which might have had type ""\cdot::*→bool→bool", it will yield the union of the sets. If applied to a set of arbitrary functions, (""\cdot::*→**→bool""), it will yield some unspecified function which is defined over the union of the domains of the functions and makes an arbitrary choice between the functions defined at any point in the domain. i.e., an arbitrary functional subset of the union of the domain, defined over the domain of that union.

$$\begin{align*}
\text{let } \text{id}_\text{DEF} &= \text{new_definition('sid_DEFi',"
(sid:SET→SET) s = sep (s * s) λx:SET• \exists(y:SET)• x = (y \mapsto y)
")};;
\end{align*}$$

$$\begin{align*}
\text{let } \text{union}_\text{DEF} &= \text{new_definition('funion_DEFi',"
(funion:PF→SET) f = sabs (ABS_PF (sid (domain (\bigcup (domain (REP_PF f))))))
λx:PF• µy:PF• (∃z:PF• (f \ f z) \neq \bot \wedge (y = z \ f x))
\lor (\forall z:PF• ((f \ f z) = \bot \wedge (y = \bot \ f x)))
")};;
\end{align*}$$

3. LEMMAS BELONGING ELSEWHERE

3.1. Function Application

$$\begin{align*}
\text{set_goal([],"}
\forall(f:PF)(x:PF) f x = \text{ABS_PF (function_application(REP_PF f)(REP_PF x))
")};;
\text{expand (REWRITE_TAC _DEFi; lift_binop_DEFi] THEN BETA_TAC THEN REWRITE_TAC[[]]);
let LBE1 = save_top_thm 'LBE1'';}
\end{align*}$$
4. LEMMAS FOR THE UNION AXIOM

4.1. Funion yields a pure function

\[\forall (f:PF)\cdot pure_function\ (funion\ f) \]

ex pand (IMP_RES_T AC P F_t14);;
let PFU_l1 = save_top_thm `PFU_l1``;
5. THE UNION AXIOM

The following theorem characterises union over pure functions:

```ml
set_goal([], "∀(f:PF)(g:PF)• (((∪ f) g) ≠ ⊥) ⇒
    (∃(i:PF)• (f i) ≠ ⊥ ∧ (i g = (∪ f) g))
    ∨
    ( ∀(i:PF)• (f i) ≠ ⊥ ⇒ (i g = ⊥))
")
expand (REPEAT GEN_TAC);
lemma ""((function_application(funion f)(REP_PF g)) = ⊥)
    = ¬(REP_PF g) ∈ (domain (funion f))"
    THEN IMP_RES_TAC [SPEC_ALL PFU_l1]
    THEN ASM_REWRITE_TAC [funion_DEF]
    THEN IMP_RES_T AC [SPECL ["funion f";"REP_PF g"] PF_t12])
expand (REWRITE_T AC [funion_DEF]);
```

6. THE END

```ml
close_theory 'pf129';
```