On the justification of formal methods

Roger Bishop Jones

ICL Defence Systems

This document consists of the overheads for a presentation at the FST quarterly meeting at ICL Winnersh on 16th January 1991.

on

THE JUSTIFICATION

of

FORMAL METHODS
Why do we care?

What kind of enterprise is it?

What kinds of justification are there?

Which justifications hold water?
WHY DO WE CARE?

• **methods work**

 we are consulted on methods and have to present some arguments in favour of specific methodological proposals

• **broadening of customer base**

 we are developing tools and will need to broaden our customer base to justify sustained development of these tools

• **professional standards**

 our reputation depends upon our self critical attitude to our work, this attitude must continue to apply to methods

• **consistency with tool standards**

 we have taken particular care over the integrity and soundness of our proof tools; this is worthless unless we have confidence in the methods which they support
METHODS are the WEAKEST LINK

FOUNDATIONAL PROBLEMS are MARGINAL

TOOL INTEGRITY PROBLEMS are SOLUBLE

TOOL PRODUCTIVITY PROBLEMS are NOT A SOURCE OF UNSOUNDNESS

METHODOLOGICAL PROBLEMS are SERIOUS

the EASIEST WAY to FAKE VERIFICATION is: PROVE AN IRRELEVANT PROPOSITION
WHAT KIND OF ENTERPRISE IS IT?

to solve FOUNDATIONAL PROBLEMS we ADAPT techniques from (mathematical) LOGIC

to SCRUTINISE
the VALIDITY of proposed FORMAL METHODS
we should CAUTIOUSLY ADAPT
METHODS from ANALYTIC PHILOSOPHY

REASONABLE SCEPTICISM

SYSTEMATIC DOUBT

PHILOSOPHICAL LOGIC
PHILOSOPHY OF MATHEMATICS
EPISTEMOLOGY
PHILOSOPHY OF SCIENCE
TYPES of JUSTIFICATION

JUSTIFICATION by ANALOGY

JUSTIFICATION by COST MEASUREMENTS

JUSTIFICATION by QUALITY MEASUREMENTS

JUSTIFICATION by COST ARGUMENTS

JUSTIFICATION by QUALITY ARGUMENTS
SCOPE of ARGUMENT

RANGE of METHODS

particular formal methods

certain kinds of formal method

all formal methods

EXTENT of APPLICATION

specifications

selective or partial proofs

full proofs

KINDS of APPLICATIONS

all applications

some applications

critical applications
Justifiability Matrix

<table>
<thead>
<tr>
<th></th>
<th>Specs</th>
<th>Selective Proof</th>
<th>Full Proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Applications</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Some Applications</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Critical Applications</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
A Sample Argument

Testing of Software
(in most cases)
cannot be exhaustive

Given a formal specification
a correct program
can be proven correct

The justification of this claim
gets us immediately into
Philosophical deep water

EXPERIMENTAL
SCIENCE
MATHEMATICS
& LOGIC

A POSTERIORI
CONTINGENT
SYNTHETIC
A PRIORI
NECESSARY
ANALYTIC
SUBJECT TO DISPUTE

The DISTINCTION between ANALYTIC and SYNTHETIC (and the other categories) (e.g. Quine)

The STATUS of MATHEMATICS (e.g. Lakatos)

HOW to ESTABLISH MATHEMATICAL TRUTHS (and hence what they are)

HOW to APPLY MATHEMATICAL TRUTHS